Suppr超能文献

利用深度学习的激光诱导击穿光谱法实现土壤分类的可视化及精度提升

Visualization and accuracy improvement of soil classification using laser-induced breakdown spectroscopy with deep learning.

作者信息

Chu Yanwu, Luo Yu, Chen Feng, Zhao Chengwei, Gong Tiancheng, Wang Yanqing, Guo Lianbo, Hong Minghui

机构信息

Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China.

Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

出版信息

iScience. 2023 Feb 9;26(3):106173. doi: 10.1016/j.isci.2023.106173. eCollection 2023 Mar 17.

Abstract

Deep learning method is applied to spectral detection due to the advantage of not needing feature engineering. In this work, the deep neural network (DNN) model is designed to perform data mining on the laser-induced breakdown spectroscopy (LIBS) spectra of the ore. The potential of heat diffusion for an affinity-based transition embedding model is first used to perform nonlinear mapping of fully connected layer data in the DNN model. Compared with traditional methods, the DNN model has the highest recognition accuracy rate (75.92%). A training set update method based on DNN output is proposed, and the final model has a recognition accuracy of 85.54%. The method of training set update proposed in this work can not only obtain the sample labels quickly but also improve the accuracy of deep learning models. The results demonstrate that LIBS combined with the DNN model is a valuable tool for ore classification at a high accuracy rate.

摘要

由于深度学习方法具有无需特征工程的优势,因此被应用于光谱检测。在这项工作中,设计了深度神经网络(DNN)模型,以对矿石的激光诱导击穿光谱(LIBS)进行数据挖掘。基于亲和力的跃迁嵌入模型的热扩散潜力首先被用于对DNN模型中的全连接层数据进行非线性映射。与传统方法相比,DNN模型具有最高的识别准确率(75.92%)。提出了一种基于DNN输出的训练集更新方法,最终模型的识别准确率为85.54%。这项工作中提出的训练集更新方法不仅可以快速获得样本标签,还可以提高深度学习模型的准确率。结果表明,LIBS与DNN模型相结合是一种以高精度对矿石进行分类的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验