Suppr超能文献

WS和WS-ZnO化学电阻式气体传感器:分析物电荷不对称和分子大小的作用

WS and WS-ZnO Chemiresistive Gas Sensors: The Role of Analyte Charge Asymmetry and Molecular Size.

作者信息

Ullah Farman, Ibrahim Khaled, Mistry Kissan, Samad Abdus, Shahin Ahmed, Sanderson Joseph, Musselman Kevin

机构信息

Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

出版信息

ACS Sens. 2023 Apr 28;8(4):1630-1638. doi: 10.1021/acssensors.2c02762. Epub 2023 Mar 16.

Abstract

We investigate the interaction of various analytes (toluene, acetone, ethanol, and water) possessing different structures, bonding, and molecular sizes with a laser-exfoliated WS sensing material in a chemiresistive sensor. The sensor showed a clear response to all analytes, which was significantly enhanced by modifying the WS surface. This was achieved by creating WS-ZnO heterojunctions via the deposition of ZnO nanoparticles on the WS surface with a high-throughput, atmospheric-pressure spatial atomic layer deposition system. Water and ethanol produced a much higher response compared to acetone and toluene for both the WS and WS-ZnO sensing mediums. We resolved that the charge-asymmetry points in analyte molecules play a key role in determining the sensor response. High charge-asymmetry points correspond to highly polar bonds (HPBs) in a neutral molecule that have a high probability of interaction with the sensing medium. Our results indicate that the polarity of the HPBs primarily dictates the interaction between the analyte and sensing medium and consequently controls the response of the sensor. Moreover, the size of the analyte molecule was found to affect the sensing response; if two molecules have the same HPBs and are exposed to the same sensing medium, the smaller molecule is likely to produce a higher and faster response. Our study provides a comprehensive picture of analyte-sensor interactions that can help in advancing semiconductor gas sensors, including those based on two-dimensional materials.

摘要

我们研究了具有不同结构、键合和分子大小的各种分析物(甲苯、丙酮、乙醇和水)与化学电阻传感器中激光剥离的WS传感材料之间的相互作用。该传感器对所有分析物均表现出明显的响应,通过修饰WS表面,响应显著增强。这是通过使用高通量大气压空间原子层沉积系统在WS表面沉积ZnO纳米颗粒来创建WS-ZnO异质结实现的。对于WS和WS-ZnO传感介质,水和乙醇产生的响应比丙酮和甲苯高得多。我们确定分析物分子中的电荷不对称点在决定传感器响应方面起关键作用。高电荷不对称点对应于中性分子中的高极性键(HPB),其与传感介质相互作用的可能性很高。我们的结果表明,HPB的极性主要决定了分析物与传感介质之间的相互作用,从而控制了传感器的响应。此外,发现分析物分子的大小会影响传感响应;如果两个分子具有相同的HPB并暴露于相同的传感介质中,较小的分子可能会产生更高、更快的响应。我们的研究提供了分析物与传感器相互作用的全面图景,有助于推动半导体气体传感器的发展,包括基于二维材料的传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验