Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
Int J Mol Sci. 2023 Oct 11;24(20):15079. doi: 10.3390/ijms242015079.
The adsorption of CO, NO, and O molecules onto Cu, Ag, and Au atoms placed in the S vacancies of a WS monolayer was elucidated within dispersion-corrected density functional theory. The binding energies computed for embedded defects into S vacancies were 2.99 (), 2.44 (), 3.32 eV (), 3.23 (), 2.55 (), and 3.48 eV/atom (), respectively. The calculated diffusion energy barriers from an S vacancy to a nearby site for Cu, Ag, and Au were 2.29, 2.18, and 2.16 eV, respectively. Thus, the substitutional atoms remained firmly fixed at temperatures above 700 K. Similarly, the adsorption energies showed that nitric oxide and carbon oxide molecules exhibited stronger chemisorption than O molecules on any of the metal atoms (Au, Cu, or Ag) placed in the S vacancies of the WS monolayer. Therefore, the adsorption of O did not compete with NO or CO adsorption and did not displace them. The density of states showed that a WS monolayer modified with a Cu, Au, or Ag atom could be used to design sensing devices, based on electronic or magnetic properties, for atmospheric pollutants. More interestingly, the adsorption of CO changed only the electronic properties of the MoS- monolayer, which could be used for sensing applications. In contrast, the O molecule was chemisorbed more strongly than CO or NO on , , or placed into di-S vacancies. Thus, if the experimental system is exposed to air, the low quantities of O molecules present should result in the oxidation of the metallic atoms. Furthermore, the O molecules adsorbed on WS- and WS- introduced a half-metallic behavior, making the system suitable for applications in spintronics.
在包含色散校正的密度泛函理论中,阐明了 CO、NO 和 O 分子在 WS 单层中的 S 空位中嵌入的 Cu、Ag 和 Au 原子上的吸附。对于嵌入 S 空位的缺陷的结合能计算分别为 2.99 (), 2.44 (), 3.32 eV (), 3.23 (), 2.55 (), 和 3.48 eV/atom (). Cu、Ag 和 Au 从 S 空位到相邻位置的扩散能垒分别为 2.29、2.18 和 2.16 eV。因此,在高于 700 K 的温度下,取代原子仍牢固固定。同样,吸附能表明,在 WS 单层的 S 空位中放置的任何金属原子(Au、Cu 或 Ag)上,一氧化氮和二氧化碳分子的化学吸附比 O 分子更强。因此,O 的吸附不会与 NO 或 CO 吸附竞争,也不会取代它们。态密度表明,基于电子或磁性性质,用 Cu、Au 或 Ag 原子修饰的 WS 单层可用于设计用于大气污染物的传感装置。更有趣的是,CO 的吸附仅改变了 MoS- 单层的电子性质,可用于传感应用。相比之下,O 分子在置于双 S 空位中的 、 或 上的化学吸附比 CO 或 NO 更强。因此,如果实验系统暴露在空气中,存在的少量 O 分子应该导致金属原子的氧化。此外,吸附在 WS-和 WS-上的 O 分子引入了半金属行为,使系统适合于在自旋电子学中的应用。