Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA.
Genome Med. 2023 Mar 16;15(1):18. doi: 10.1186/s13073-023-01166-7.
Rapidly and efficiently identifying critically ill infants for whole genome sequencing (WGS) is a costly and challenging task currently performed by scarce, highly trained experts and is a major bottleneck for application of WGS in the NICU. There is a dire need for automated means to prioritize patients for WGS.
Institutional databases of electronic health records (EHRs) are logical starting points for identifying patients with undiagnosed Mendelian diseases. We have developed automated means to prioritize patients for rapid and whole genome sequencing (rWGS and WGS) directly from clinical notes. Our approach combines a clinical natural language processing (CNLP) workflow with a machine learning-based prioritization tool named Mendelian Phenotype Search Engine (MPSE).
MPSE accurately and robustly identified NICU patients selected for WGS by clinical experts from Rady Children's Hospital in San Diego (AUC 0.86) and the University of Utah (AUC 0.85). In addition to effectively identifying patients for WGS, MPSE scores also strongly prioritize diagnostic cases over non-diagnostic cases, with projected diagnostic yields exceeding 50% throughout the first and second quartiles of score-ranked patients.
Our results indicate that an automated pipeline for selecting acutely ill infants in neonatal intensive care units (NICU) for WGS can meet or exceed diagnostic yields obtained through current selection procedures, which require time-consuming manual review of clinical notes and histories by specialized personnel.
快速有效地识别出需要进行全基因组测序(WGS)的危重症婴儿是一项艰巨而具有挑战性的任务,目前由稀缺的、经过高度培训的专家来完成,这也是 WGS 在新生儿重症监护病房(NICU)应用的主要瓶颈。迫切需要自动化的方法来优先考虑 WGS 患者。
电子病历(EHR)的机构数据库是识别患有未确诊孟德尔疾病患者的合理起点。我们已经开发了一种自动化的方法,可直接从临床记录中为快速和全基因组测序(rWGS 和 WGS)对患者进行优先级排序。我们的方法结合了临床自然语言处理(CNLP)工作流程和一种名为孟德尔表型搜索引擎(MPSE)的基于机器学习的优先级排序工具。
MPSE 准确而稳健地从圣地亚哥 Rady 儿童医院(AUC 0.86)和犹他大学的临床专家选择的 WGS 患者中识别出来(AUC 0.85)。除了有效地识别 WGS 患者外,MPSE 评分还能强烈地将诊断病例优先于非诊断病例,预计在评分排名前两季度的患者中,诊断率超过 50%。
我们的研究结果表明,一种用于选择新生儿重症监护病房(NICU)中急性疾病婴儿进行 WGS 的自动化管道可以达到或超过当前通过耗时的临床笔记和病史的手动审查来选择患者的方法的诊断率,这些方法需要由专门人员来完成。