Suppr超能文献

利用感知医疗障碍评分预测卫生服务利用情况:来自塞内加尔农村的证据。

Predicting health services utilization using a score of perceived barriers to medical care: evidence from rural Senegal.

机构信息

Aix Marseille University, CNRS, AMSE, Marseille, France.

Aix Marseille University, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France.

出版信息

BMC Health Serv Res. 2023 Mar 16;23(1):263. doi: 10.1186/s12913-023-09192-2.

Abstract

BACKGROUND

Ensuring access to healthcare services is a key element to achieving the Sustainable Development Goal 3 of "promoting healthy lives and well-being for all" through Universal Health Coverage (UHC). However, in the context of low- and middle-income countries, most studies focused on financial protection measured through catastrophic health expenditures (CHE), or on health services utilization among specific populations exhibiting health needs (such as pregnancy or recent sickness).

METHODS

This study aims at building an individual score of perceived barriers to medical care (PBMC) in order to predict primary care utilization (or non-utilization). We estimate the score on six items: (1) knowing where to go, (2) getting permission, (3) having money, (4) distance to the facility, (5) finding transport, and (6) not wanting to go alone, using individual data from 1787 adult participants living in rural Senegal. We build the score via a stepwise descendent explanatory factor analysis (EFA), and assess its internal consistency. Finally, we assess the construct validity of the factor-based score by testing its association (univariate regressions) with a wide range of variables on determinants of healthcare-seeking, and evaluate its predictive validity for primary care utilization.

RESULTS

EFA yields a one-dimensional score combining four items with a 0.7 Cronbach's alpha indicating good internal consistency. The score is strongly associated-p-values significant at the 5% level-with determinants of healthcare-seeking (including, but not limited to, sex, education, marital status, poverty, and distance to the health facility). Additionally, the score can predict non-utilization of primary care at the household level, utilization and non-utilization of primary care following an individual's episode of illness, and utilization of primary care during pregnancy and birth. These results are robust to the use of a different dataset.

CONCLUSION

As a valid, sensitive, and easily documented individual-level indicator, the PBMC score can be a complement to regional or national level health services coverage to measure health services access and predict utilization. At the individual or household level, the PBMC score can also be combined with conventional metrics of financial risk protection such as CHE to comprehensively document deficits in, and progress towards UHC.

摘要

背景

通过全民医保(UHC)实现“促进所有人的健康生活和福祉”这一可持续发展目标 3 的关键要素是确保获得医疗保健服务。然而,在中低收入国家的背景下,大多数研究都集中在通过灾难性卫生支出(CHE)衡量的财务保护,或者针对表现出健康需求的特定人群(如怀孕或近期患病)的卫生服务利用情况。

方法

本研究旨在构建一个感知医疗障碍个体评分(PBMC),以预测初级保健利用(或未利用)。我们使用来自塞内加尔农村地区的 1787 名成年参与者的个体数据,通过逐步下降解释性因素分析(EFA)来估计六个项目的得分:(1)知道去哪里,(2)获得许可,(3)有资金,(4)与医疗机构的距离,(5)寻找交通工具,以及(6)不想独自前往。我们通过 EFA 构建评分,并评估其内部一致性。最后,我们通过检验与医疗保健寻求决定因素的广泛变量的关联(单变量回归)来评估基于因素的评分的结构有效性,并评估其对初级保健利用的预测有效性。

结果

EFA 产生了一个一维评分,将四项具有 0.7 Cronbach's alpha 的良好内部一致性的项目组合在一起。该评分与医疗保健寻求的决定因素密切相关(p 值在 5%水平显著),包括但不限于性别、教育、婚姻状况、贫困和与医疗机构的距离。此外,该评分可以预测家庭层面的初级保健未利用情况、个体疾病发作后的初级保健利用和未利用情况,以及怀孕期间和分娩时的初级保健利用。这些结果在使用不同数据集时仍然稳健。

结论

作为一种有效、敏感且易于记录的个体水平指标,PBMC 评分可以作为区域或国家卫生服务覆盖范围的补充,以衡量卫生服务获取情况并预测利用情况。在个体或家庭层面,PBMC 评分还可以与 CHE 等传统财务风险保护指标相结合,全面记录 UHC 方面的不足和进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验