Suppr超能文献

喹啉酸盐通过 NMDAR/PPARγ 信号轴促进胶质母细胞瘤中的巨噬细胞诱导免疫耐受。

Quinolinate promotes macrophage-induced immune tolerance in glioblastoma through the NMDAR/PPARγ signaling axis.

机构信息

Department of Radiation Oncology, Corewell Health East, Royal Oak, MI, USA.

Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Nat Commun. 2023 Mar 16;14(1):1459. doi: 10.1038/s41467-023-37170-z.

Abstract

There has been considerable scientific effort dedicated to understanding the biologic consequence and therapeutic implications of aberrant tryptophan metabolism in brain tumors and neurodegenerative diseases. A majority of this work has focused on the upstream metabolism of tryptophan; however, this has resulted in limited clinical application. Using global metabolomic profiling of patient-derived brain tumors, we identify the downstream metabolism of tryptophan and accumulation of quinolinate (QA) as a metabolic node in glioblastoma and demonstrate its critical role in promoting immune tolerance. QA acts as a metabolic checkpoint in glioblastoma by inducing NMDA receptor activation and Foxo1/PPARγ signaling in macrophages, resulting in a tumor supportive phenotype. Using a genetically-engineered mouse model designed to inhibit production of QA, we identify kynureninase as a promising therapeutic target to revert the potent immune suppressive microenvironment in glioblastoma. These findings offer an opportunity to revisit the biologic consequence of this pathway as it relates to oncogenesis and neurodegenerative disease and a framework for developing immune modulatory agents to further clinical gains in these otherwise incurable diseases.

摘要

人们投入了大量的科学努力来理解色氨酸代谢异常在脑肿瘤和神经退行性疾病中的生物学后果和治疗意义。这项工作的大部分都集中在上游的色氨酸代谢上,但这导致了有限的临床应用。我们通过对患者来源的脑肿瘤进行全局代谢组学分析,确定了色氨酸的下游代谢和喹啉酸(QA)的积累是神经胶质瘤中的一个代谢节点,并证明了它在促进免疫耐受中的关键作用。QA 通过在巨噬细胞中诱导 NMDA 受体激活和 Foxo1/PPARγ 信号转导,充当神经胶质瘤中的代谢检查点,导致肿瘤支持表型。通过使用一种设计用于抑制 QA 产生的基因工程小鼠模型,我们确定了犬尿氨酸酶是一种有前途的治疗靶点,可以逆转神经胶质瘤中强大的免疫抑制微环境。这些发现为重新审视该途径与肿瘤发生和神经退行性疾病的生物学后果提供了机会,并为开发免疫调节药物提供了框架,以在这些无法治愈的疾病中进一步取得临床进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ed/10020159/acbdbcc1d4f1/41467_2023_37170_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验