Suppr超能文献

一种新的定制胎儿生长参考百分位数的方法。

A new method for customized fetal growth reference percentiles.

机构信息

Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America.

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

出版信息

PLoS One. 2023 Mar 16;18(3):e0282791. doi: 10.1371/journal.pone.0282791. eCollection 2023.

Abstract

BACKGROUND

Customized fetal growth charts assume birthweight at term to be normally distributed across the population with a constant coefficient of variation at earlier gestational ages. Thus, standard deviation used for computing percentiles (e.g., 10th, 90th) is assumed to be proportional to the customized mean, although this assumption has never been formally tested.

METHODS

In a secondary analysis of NICHD Fetal Growth Studies-Singletons (12 U.S. sites, 2009-2013) using longitudinal sonographic biometric data (n = 2288 pregnancies), we investigated the assumptions of normality and constant coefficient of variation by examining behavior of the mean and standard deviation, computed following the Gardosi method. We then created a more flexible model that customizes both mean and standard deviation using heteroscedastic regression and calculated customized percentiles directly using quantile regression, with an application in a separate study of 102, 012 deliveries, 37-41 weeks.

RESULTS

Analysis of term optimal birthweight challenged assumptions of proportionality and that values were normally distributed: at different mean birthweight values, standard deviation did not change linearly with mean birthweight and the percentile computed with the normality assumption deviated from empirical percentiles. Composite neonatal morbidity and mortality rates in relation to birthweight < 10th were higher for heteroscedastic and quantile models (10.3% and 10.0%, respectively) than the Gardosi model (7.2%), although prediction performance was similar among all three (c-statistic 0.52-0.53).

CONCLUSIONS

Our findings question normality and constant coefficient of variation assumptions of the Gardosi customization method. A heteroscedastic model captures unstable variance in customization characteristics which may improve detection of abnormal growth percentiles.

TRIAL REGISTRATION

ClinicalTrials.gov identifier: NCT00912132.

摘要

背景

定制胎儿生长图表假设足月出生体重在人群中呈正态分布,在早期妊娠阶段变异系数保持不变。因此,用于计算百分位数(例如,第 10 百分位、第 90 百分位)的标准差被假定为与定制平均值成比例,尽管这一假设从未经过正式检验。

方法

我们使用纵向超声生物测量数据(n=2288 例妊娠)对 NICHD 胎儿生长研究- singleton (美国 12 个地点,2009-2013 年)进行二次分析,通过检查均值和标准差的行为来研究正态性和常数变异系数的假设,这些数据是按照 Gardosi 方法计算的。然后,我们创建了一个更灵活的模型,该模型使用异方差回归定制均值和标准差,并使用分位数回归直接计算定制百分位数,该模型在一项单独的研究中得到了应用,该研究涉及 102012 例 37-41 周的分娩。

结果

对足月最佳出生体重的分析挑战了比例性和正态分布的假设:在不同的平均出生体重值下,标准差与平均出生体重没有线性变化,并且在正态性假设下计算的百分位数与经验百分位数存在偏差。与 Gardosi 模型相比,异方差和分位数模型的出生体重<第 10 百分位的复合新生儿发病率和死亡率(分别为 10.3%和 10.0%)更高,尽管所有三种模型的预测性能相似(c 统计量为 0.52-0.53)。

结论

我们的研究结果对 Gardosi 定制方法的正态性和常数变异系数假设提出了质疑。异方差模型可以捕捉定制特征中不稳定的方差,从而可能提高异常生长百分位数的检测能力。

试验注册

ClinicalTrials.gov 标识符:NCT00912132。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d50b/10019672/8a5d15383e77/pone.0282791.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验