Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain.
Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain.
Nat Med. 2023 Mar;29(3):632-645. doi: 10.1038/s41591-022-02178-3. Epub 2023 Mar 16.
The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8 T cells with reduced immunosuppressive regulatory T (T) cells, while late MYC acquisition in slow progressors was associated with lower CD8 T cell infiltration and more abundant T cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8 T cells versus T cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8 T/T cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8 T cell cytotoxicity or depleting T cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.
历史上缺乏反映多发性骨髓瘤 (MM) 遗传异质性的临床前模型,阻碍了治疗发现的进展。为了克服这一限制,我们筛选了经过基因工程改造的小鼠,这些小鼠在 T 细胞驱动的免疫后,B 淋巴细胞中组合激活了 NF-κB、KRAS、MYC、TP53、BCL2、细胞周期蛋白 D1、MMSET/NSD2 和 c-MAF 等 8 种 MM 病变。15 种遗传上不同的模型发展出了符合 MM 发病机制的骨髓 (BM) 肿瘤。对大约 500 只小鼠和约 1000 名患者的综合分析揭示了一个共同的 MAPK-MYC 遗传途径,该途径加速了从遗传异质性 MM 前体状态向进展的时间进程。MYC 依赖性进展时间决定了免疫逃避机制,这些机制不同地重塑了 BM 微环境。快速 MYC 驱动的进展者表现出大量激活/耗竭的 CD8 T 细胞,而抑制性调节性 T (T) 细胞减少,而在缓慢进展者中晚期 MYC 获得与 CD8 T 细胞浸润减少和更多 T 细胞相关。单细胞转录组学和功能测定将 CD8 T 细胞与 T 细胞的高比例定义为对免疫检查点阻断 (ICB) 反应的预测因子。在临床系列中,未经治疗的冒烟 MM 中未处理的 CD8 T/T 细胞比值高与早期进展相关,并与接受 Len/Dex 治疗的新诊断 MM 患者早期复发相关。在 ICB 难治性 MM 模型中,增加 CD8 T 细胞细胞毒性或耗尽 T 细胞可逆转免疫治疗耐药性,并延长 MM 控制时间。我们的实验模型使 MM 遗传和免疫学特征与临床前治疗反应相关联,这可能为下一代免疫治疗试验提供信息。