Suppr超能文献

采用多种机器学习技术对 CT 成像中的高度稳健可视化生物标志物进行治疗前研究,以预测 NSCLC 中 ALK 抑制剂治疗的预后:一项可行性研究。

Pretherapy investigations using highly robust visualized biomarkers from CT imaging by multiple machine-learning techniques toward its prognosis prediction for ALK-inhibitor therapy in NSCLC: a feasibility study.

机构信息

Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.

Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co, Ltd, Beijing, 100080, China.

出版信息

J Cancer Res Clin Oncol. 2023 Aug;149(10):7341-7353. doi: 10.1007/s00432-023-04615-3. Epub 2023 Mar 16.

Abstract

PURPOSE

Molecularly targeted therapy has revolutionized the therapeutic landscape and is emerging as the first-line treatment option for ALK-rearranged non-small-cell lung cancer (NSCLC). In this study, the highly informative and robust biomarkers based on pre-treatment CT images and clinicopathologic features will be developed and validated to predict the prognosis for ALK-inhibitor therapy in NSCLC patients.

METHODS

A total of 161 ALK-positive NSCLC patients treated with ALK inhibitors were retrospectively collected as training, validation and test sets from multi-center institutions. Cox proportional hazard regression (CPH) penalized by LASSO and random survival forest (RSF) coupled with recursive feature elimination (RFE) were used for radiomics and clinical features identification and model construction. An overlapping post-processing method was extra added to training process to investigate the stronger biomarker on the whole set.

RESULTS

123 of the collected cases progressed after a median follow-up of 15.5 months (IQR, 8.3-25.3). The T and M staging, pericardial effusion, age and ALK inhibitor-alectinib were determined as significant predictors in the survival analysis. Furthermore, we visualized the finally retained 4 radiomics feature. The RSF models built from overlapping-processed clinical and radiomics features respectively reached the maximum C-index of 0.68 and 0.75,but the combination of them,radioclinical signature, improved the score to 0.78. The model on the validation and external test datasets yielded the C-index of 0.73 and 0.79, with the iAUC of 0.76 and 0.83, the IBS of 0.119 and 0.112.

CONCLUSION

With respect to a simple selection strategy of overlapping optimal radiomics and clinical features from different survival models may promote better progression-free survival(PFS) prediction than conventional survival analysis, which provides a potential method for guiding personalized pre-treatment options of NSCLC.

摘要

目的

分子靶向治疗已经彻底改变了治疗格局,并且正在成为 ALK 重排型非小细胞肺癌(NSCLC)的一线治疗选择。在这项研究中,我们将开发和验证基于治疗前 CT 图像和临床病理特征的高信息量且稳健的生物标志物,以预测 NSCLC 患者接受 ALK 抑制剂治疗的预后。

方法

回顾性地从多中心机构收集了 161 名接受 ALK 抑制剂治疗的 ALK 阳性 NSCLC 患者作为训练、验证和测试集。使用基于 Cox 比例风险回归(CPH)的 LASSO 惩罚和随机生存森林(RSF)与递归特征消除(RFE)结合的方法对放射组学和临床特征进行识别和模型构建。在训练过程中额外添加了重叠后处理方法,以研究整个数据集上更强的生物标志物。

结果

在中位随访 15.5 个月(IQR,8.3-25.3)后,收集的 123 例患者中发生进展。生存分析显示,T 和 M 分期、心包积液、年龄和 ALK 抑制剂-阿来替尼是生存的显著预测因子。此外,我们还可视化了最终保留的 4 个放射组学特征。分别基于重叠处理后的临床和放射组学特征构建的 RSF 模型达到了 0.68 和 0.75 的最大 C 指数,但将它们结合起来,即放射临床特征,将评分提高到了 0.78。验证和外部测试数据集上的模型得到了 0.73 和 0.79 的 C 指数,0.76 和 0.83 的 iAUC,0.119 和 0.112 的 IBS。

结论

对于一种简单的选择策略,即从不同的生存模型中重叠选择最佳的放射组学和临床特征,可能比传统的生存分析更能提高无进展生存期(PFS)的预测效果,为指导 NSCLC 的个体化治疗前选择提供了一种潜在的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验