Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
Eur J Radiol. 2021 Jun;139:109710. doi: 10.1016/j.ejrad.2021.109710. Epub 2021 Apr 8.
To develop and validate a CT-based radiomic model to simultaneously diagnose anaplastic lymphoma kinase (ALK) rearrangements and epidermal growth factor receptor (EGFR) mutation status of lung adenocarcinoma and to assess whether peritumoural radiomic features add value in the prediction of mutation status.
503 patients with pathologically proven lung adenocarcinoma containing information on the mutation status were retrospectively included. Intratumoural and peritumoural radiomic features of the primary lesion were extracted from CT. We proposed two-level stepwise binary radiomics-based classification models to diagnose ALK (step1) and EGFR mutation status (step2). The performance of proposed models and added value of peritumoural radiomic features were evaluated by using the areas under receiver operating characteristic curves (AUC) and Obuchowski index in the development and validation sets.
Regarding the prediction of ALK rearrangement, the diagnostic performance of the intratumoural radiomic model showed the AUC of 0.77 and 0.68 for the development and validation sets, respectively. As for EGFR mutation, the diagnostic performance of the intratumoural radiomic model showed the AUCs of 0.64 and 0.62 for the development and validation sets, respectively. The radiomics added value to the model based on clinical features (development set [radiomics + clinical model vs. clinical model]: Obuchowski index, 0.76 vs. 0.66, p < 0.001; validation set: 0.69 vs. 0.61, p = 0.075). Adding peritumoural features resulted in no improvement in terms of model performance.
The CT radiomics-based model allowed the simultaneous prediction of the presence of ALK and EGFR mutations while adding value to the clinical features.
开发并验证一种基于 CT 的放射组学模型,以同时诊断肺腺癌的间变性淋巴瘤激酶(ALK)重排和表皮生长因子受体(EGFR)突变状态,并评估肿瘤周围放射组学特征是否有助于预测突变状态。
回顾性纳入了 503 名经病理证实的肺腺癌患者,这些患者的肿瘤均包含突变状态的相关信息。从 CT 中提取原发性病变的肿瘤内和肿瘤周围的放射组学特征。我们提出了两级逐步二进制放射组学分类模型,以诊断 ALK(步骤 1)和 EGFR 突变状态(步骤 2)。通过在开发和验证集中使用接收者操作特征曲线(AUC)和 Obuchowski 指数评估所提出模型的性能和肿瘤周围放射组学特征的附加值。
在预测 ALK 重排方面,肿瘤内放射组学模型的诊断性能在开发和验证集中的 AUC 分别为 0.77 和 0.68。对于 EGFR 突变,肿瘤内放射组学模型的诊断性能在开发和验证集中的 AUC 分别为 0.64 和 0.62。放射组学为基于临床特征的模型提供了附加值(开发集[放射组学+临床模型与临床模型]:Obuchowski 指数,0.76 与 0.66,p<0.001;验证集:0.69 与 0.61,p=0.075)。添加肿瘤周围特征并不能提高模型性能。
基于 CT 的放射组学模型可以同时预测 ALK 和 EGFR 突变的存在,并为临床特征提供附加值。