Suppr超能文献

大尺寸可控合成共价交联聚离子液体纳米多孔膜。

Large-Scale and Controllable Syntheses of Covalently-Crosslinked Poly(ionic liquid) Nanoporous Membranes.

机构信息

Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2023 May 8;62(20):e202302168. doi: 10.1002/anie.202302168. Epub 2023 Apr 12.

Abstract

Herein, we report an exciting synthetic procedure for the scalable and controllable fabrication of covalently crosslinked poly(ionic liquid) (PIL) nanoporous membranes (CPILMs) in water solution under ambient conditions. We found that the pore sizes, flexibility and compositions of freestanding CPILMs can be finely tailored by a rational structural choice of PIL, diketone and aldehyde. Studies on the CPILM formation mechanism revealed that hydrogen bonding-induced phase separation of amino-functionalized homo-PIL between its polar and apolar domains coupled with structural rearrangements due to the Debus Radsizewski reaction-triggered ambient covalent crosslinking process created a stable three-dimensionally interconnected pore system in water solution. Employing structurally stable CPILMs in ion sieving devices resulted in an excellent Li /Mg separation efficiency due to the positively charged nature and "Donann" effects. This green, facile yet versatile approach to the production of CPILMs is a conceptually distinct and commercially interesting strategy for making useful nanoporous functional polyelectrolyte membranes.

摘要

本文报道了一种在环境条件下于水溶液中可规模化、可控地制备共价交联聚离子液体(PIL)纳米多孔膜(CPILM)的令人兴奋的合成方法。我们发现,通过合理选择 PIL、二酮和醛,可精细调整独立 CPILM 的孔径、柔韧性和组成。对 CPILM 形成机制的研究表明,氢键诱导的氨基功能化均聚 PIL 在其极性和非极性区域之间的相分离,加上 Debus-Radsizewski 反应引发的环境共价交联过程导致的结构重排,在水溶液中产生了稳定的三维互联孔系统。在离子筛分装置中使用结构稳定的 CPILM 由于其带正电荷的性质和“Donann”效应,导致具有优异的 Li/Mg 分离效率。这种绿色、简单而多功能的 CPILM 生产方法是一种具有概念性差异和商业吸引力的策略,可用于制造有用的纳米多孔功能聚合物电解质膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验