Suppr超能文献

受儿科癌症多组学挑战启发的统计方法。

Statistical Methods Inspired by Challenges in Pediatric Cancer Multi-omics.

机构信息

College of Nursing, University of Tennessee Health Science Center, Memphis, TN, USA.

Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Methods Mol Biol. 2023;2629:349-373. doi: 10.1007/978-1-0716-2986-4_16.

Abstract

Pediatric cancer multi-omics is a uniquely rewarding and challenging domain of biomedical research. Public generosity bestows an abundance of resources for the study of extremely rare diseases; this unique dynamic creates a research environment in which problems with high-dimension and low sample size are commonplace. Here, we present a few statistical methods that we have developed for our research setting and believe will prove valuable in other biomedical research settings as well. The genomic random interval (GRIN) method evaluates the loci and frequency of genomic abnormalities in the DNA of tumors to identify genes that may drive the development of malignancies. The association of lesions with expression (ALEX) method evaluates the impact of genomic abnormalities on the RNA transcription of nearby genes to inform the formulation of biological hypotheses on molecular mechanisms. The projection onto the most interesting statistical evidence (PROMISE) method identifies omic features that consistently associate with better prognosis or consistently associate with worse prognosis across multiple measures of clinical outcome. We have shown that these methods are statistically robust and powerful in the statistical bioinformatic literature and successfully used these methods to make fundamental biological discoveries that have formed the scientific rationale for ongoing clinical trials. We describe these methods and illustrate their application on a publicly available T-cell acute lymphoblastic leukemia (T-ALL) data set. A companion github site ( https://github.com/stjude/TALL-example ) provides the R code and data necessary to recapitulate the example data analyses of this chapter.

摘要

儿科癌症多组学是生物医学研究中一个非常有价值但极具挑战性的领域。公众的慷慨为研究极其罕见疾病提供了丰富的资源;这种独特的动态创造了一个研究环境,其中高维性和低样本量的问题很常见。在这里,我们介绍了一些我们为研究环境开发的统计方法,并相信这些方法在其他生物医学研究环境中也将具有价值。基因组随机区间 (GRIN) 方法评估肿瘤 DNA 中基因组异常的位置和频率,以识别可能驱动恶性肿瘤发展的基因。病变与表达的关联 (ALEX) 方法评估基因组异常对附近基因 RNA 转录的影响,为分子机制的生物学假说提供信息。最有趣的统计证据投影 (PROMISE) 方法确定与多个临床结果测量一致相关的预后更好或更差的组学特征。我们已经证明这些方法在统计生物信息学文献中具有统计学稳健性和强大性,并成功地使用这些方法进行了基础性的生物学发现,这些发现为正在进行的临床试验提供了科学依据。我们描述了这些方法,并在一个公开可用的 T 细胞急性淋巴细胞白血病 (T-ALL) 数据集上说明了它们的应用。一个配套的 github 站点 ( https://github.com/stjude/TALL-example ) 提供了重现本章示例数据分析所需的 R 代码和数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验