Department of Chemistry, Pennsylvania State University, University Park, United States.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.
Elife. 2023 Mar 17;12:e82584. doi: 10.7554/eLife.82584.
SARS-CoV-2 emergent variants are characterized by increased viral fitness and each shows multiple mutations predominantly localized to the spike (S) protein. Here, amide hydrogen/deuterium exchange mass spectrometry has been applied to track changes in S dynamics from multiple SARS-CoV-2 variants. Our results highlight large differences across variants at two loci with impacts on S dynamics and stability. A significant enhancement in stabilization first occurred with the emergence of D614G S followed by smaller, progressive stabilization in subsequent variants. Stabilization preceded altered dynamics in the N-terminal domain, wherein Omicron BA.1 S showed the largest magnitude increases relative to other preceding variants. Changes in stabilization and dynamics resulting from S mutations detail the evolutionary trajectory of S in emerging variants. These carry major implications for SARS-CoV-2 viral fitness and offer new insights into variant-specific therapeutic development.
SARS-CoV-2 新兴变体的特点是病毒适应性增强,并且每个变体都显示出多个主要定位于刺突(S)蛋白的突变。在这里,酰胺氢/氘交换质谱已被应用于跟踪来自多种 SARS-CoV-2 变体的 S 动力学变化。我们的研究结果突出了两个位点的变体之间的巨大差异,这些差异对 S 的动力学和稳定性有影响。D614G S 的出现首先显著增强了稳定性,随后在随后的变体中逐渐稳定。在 N 端结构域中,奥密克戎 BA.1 S 相对于其他先前的变体表现出最大的动力学变化,稳定性增强先于动力学变化。S 突变导致的稳定性和动力学变化详细描述了 S 在新兴变体中的进化轨迹。这些对 SARS-CoV-2 病毒适应性有重大影响,并为针对特定变体的治疗开发提供了新的见解。