Signal and Image Processing Institute, University of Southern California, Los Angeles, United States.
Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, United States.
Elife. 2023 Mar 17;12:e68531. doi: 10.7554/eLife.68531.
Seizure generation, propagation, and termination occur through spatiotemporal brain networks. In this paper, we demonstrate the significance of large-scale brain interactions in high-frequency (80-200Hz) for the identification of the epileptogenic zone (EZ) and seizure evolution. To incorporate the continuity of neural dynamics, here we have modeled brain connectivity constructed from stereoelectroencephalography (SEEG) data during seizures using multilayer networks. After introducing a new measure of brain connectivity for temporal networks, named multilayer eigenvector centrality (mlEVC), we applied a consensus hierarchical clustering on the developed model to identify the EZ as a cluster of nodes with distinctive brain connectivity in the ictal period. Our algorithm could successfully predict electrodes inside the resected volume as EZ for 88% of participants, who all were seizure-free for at least 12 months after surgery. Our findings illustrated significant and unique desynchronization between EZ and the rest of the brain in the early to mid-seizure. We showed that aging and the duration of epilepsy intensify this desynchronization, which can be the outcome of abnormal neuroplasticity. Additionally, we illustrated that seizures evolve with various network topologies, confirming the existence of different epileptogenic networks in each patient. Our findings suggest not only the importance of early intervention in epilepsy but possible factors that correlate with disease severity. Moreover, by analyzing the propagation patterns of different seizures, we demonstrate the necessity of collecting sufficient data for identifying epileptogenic networks.
癫痫发作的产生、传播和终止是通过时空脑网络进行的。在本文中,我们证明了在识别致痫区(EZ)和癫痫发作演变过程中,大脑在高频(80-200Hz)时的大规模相互作用的重要性。为了结合神经动力学的连续性,我们使用多层网络对癫痫发作期间立体脑电图(SEEG)数据构建的脑连接进行建模。在引入了一种新的用于时间网络的脑连接度量——多层特征向量中心度(mlEVC)之后,我们对所开发的模型进行了共识层次聚类,以确定 EZ 是在癫痫发作期间具有独特脑连接的节点簇。我们的算法可以成功预测切除体积内的电极作为 EZ,对于所有参与者来说,88%的参与者在手术后至少 12 个月内没有癫痫发作。我们的发现表明,在癫痫发作的早期到中期,EZ 与大脑其余部分之间存在显著且独特的去同步化。我们表明,衰老和癫痫持续时间会加剧这种去同步化,这可能是异常神经可塑性的结果。此外,我们还表明,癫痫发作会随着各种网络拓扑结构而演变,这证实了每个患者中存在不同的致痫网络。我们的研究结果不仅表明了在癫痫中早期干预的重要性,还表明了与疾病严重程度相关的可能因素。此外,通过分析不同癫痫发作的传播模式,我们证明了为识别致痫网络而收集足够数据的必要性。