Suppr超能文献

基于相似性的视觉工作记忆中多特征物体的聚类。

Similarity-based clustering of multifeature objects in visual working memory.

机构信息

Graduate Program for Cognitive Science, Yonsei University, Seoul, South Korea.

Department of Psychology, University of Toronto, Toronto, ON, Canada.

出版信息

Atten Percept Psychophys. 2023 Oct;85(7):2242-2256. doi: 10.3758/s13414-023-02687-4. Epub 2023 Mar 17.

Abstract

This study investigated the similarity-based clustering mechanism of multifeature stimuli, wherein items are separated or grouped based on their similarity in visual working memory (VWM). In particular, we investigated whether clustering occurred at an individual feature level or at an integrated object level when participants encoded objects with multiple features for VWM. To test this, we conducted two experiments in which participants remembered and reconstructed a randomly chosen feature (either color or orientation) from one of five presented stimuli. As a key manipulation, we kept the distributions of the two feature dimensions constant while controlling the conjunction between the two dimensions in two different conditions: congruent conjunction (CC) and incongruent conjunction (IC). With this manipulation, we expected to observe the same number of clusters regardless of the conjunction condition when clustering occurred at the feature level. However, we expected a different number of clusters for CC and IC conditions when clustering occurred at the object level. Across two experiments, we consistently observed evidence that favored feature-level clustering. Nevertheless, we found that the swap error rates increased in the IC condition only when two features had to be encoded in VWM. These results suggest that clustering occurs at the feature level in VWM and that feature-level clustering influences item-level feature binding. Therefore, our study demonstrated the flexibility of representational units in VWM.

摘要

本研究调查了多特征刺激的基于相似性的聚类机制,其中项目根据其在视觉工作记忆(VWM)中的相似性进行分离或分组。具体来说,我们研究了当参与者对 VWM 中的多个特征编码对象时,聚类是在单个特征级别还是在集成对象级别发生。为了检验这一点,我们进行了两项实验,其中参与者从五个呈现的刺激中记住并重建一个随机选择的特征(颜色或方向)。作为关键操作,我们保持两个特征维度的分布不变,同时在两个不同条件下控制两个维度之间的结合:一致结合(CC)和不一致结合(IC)。通过这种操作,当聚类发生在特征级别时,我们预计无论结合条件如何,都会观察到相同数量的聚类。但是,当聚类发生在对象级别时,我们预计 CC 和 IC 条件下的聚类数量会有所不同。在两项实验中,我们一致观察到支持特征级聚类的证据。然而,我们发现只有当两个特征必须在 VWM 中编码时,IC 条件下的交换错误率才会增加。这些结果表明,聚类发生在 VWM 中的特征级别,并且特征级聚类影响项目级特征绑定。因此,我们的研究表明 VWM 中的表示单位具有灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验