Suppr超能文献

机器学习方法理解 HIV 感染者的认知表型。

Machine Learning Approaches to Understand Cognitive Phenotypes in People With HIV.

机构信息

Massachusetts General Hospital, Boston, Massachusetts, USA.

Dana-Farber Cancer Institute, Boston, Massachusetts, USA.

出版信息

J Infect Dis. 2023 Mar 17;227(Suppl 1):S48-S57. doi: 10.1093/infdis/jiac293.

Abstract

Cognitive disorders are prevalent in people with HIV (PWH) despite antiretroviral therapy. Given the heterogeneity of cognitive disorders in PWH in the current era and evidence that these disorders have different etiologies and risk factors, scientific rationale is growing for using data-driven models to identify biologically defined subtypes (biotypes) of these disorders. Here, we discuss the state of science using machine learning to understand cognitive phenotypes in PWH and their associated comorbidities, biological mechanisms, and risk factors. We also discuss methods, example applications, challenges, and what will be required from the field to successfully incorporate machine learning in research on cognitive disorders in PWH. These topics were discussed at the National Institute of Mental Health meeting on "Biotypes of CNS Complications in People Living with HIV" held in October 2021. These ongoing research initiatives seek to explain the heterogeneity of cognitive phenotypes in PWH and their associated biological mechanisms to facilitate clinical management and tailored interventions.

摘要

认知障碍在接受抗逆转录病毒疗法的 HIV 感染者(PWH)中很常见。鉴于当前时代 PWH 中认知障碍的异质性,以及这些障碍具有不同病因和风险因素的证据,使用基于数据的模型来识别这些障碍的生物学定义亚型(生物型)的科学依据越来越充分。在这里,我们讨论了使用机器学习来理解 PWH 的认知表型及其相关共病、生物学机制和风险因素的科学现状。我们还讨论了方法、示例应用、挑战,以及该领域成功将机器学习纳入 PWH 认知障碍研究所需的条件。这些主题是在 2021 年 10 月举行的“HIV 感染者中枢神经系统并发症的生物型”国家心理健康研究所会议上讨论的。这些正在进行的研究计划旨在解释 PWH 认知表型的异质性及其相关的生物学机制,以促进临床管理和针对性干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2420/10022709/c3cf322073c1/jiac293f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验