Suppr超能文献

医学诊断的多模态融合方面:全面综述

Multimodality Fusion Aspects of Medical Diagnosis: A Comprehensive Review.

作者信息

Kumar Sachin, Rani Sita, Sharma Shivani, Min Hong

机构信息

Akian College of Science and Engineering, American University of Armenia, Yerevan 0019, Armenia.

Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana 141006, India.

出版信息

Bioengineering (Basel). 2024 Dec 5;11(12):1233. doi: 10.3390/bioengineering11121233.

Abstract

Utilizing information from multiple sources is a preferred and more precise method for medical experts to confirm a diagnosis. Each source provides critical information about the disease that might otherwise be absent in other modalities. Combining information from various medical sources boosts confidence in the diagnosis process, enabling the creation of an effective treatment plan for the patient. The scarcity of medical experts to diagnose diseases motivates the development of automatic diagnoses relying on multimodal data. With the progress in artificial intelligence technology, automated diagnosis using multimodal fusion techniques is now possible. Nevertheless, the concept of multimodal medical diagnosis is still new and requires an understanding of the diverse aspects of multimodal data and its related challenges. This review article examines the various aspects of multimodal medical diagnosis to equip readers, academicians, and researchers with necessary knowledge to advance multimodal medical research. The chosen articles in the study underwent thorough screening from reputable journals and publishers to offer high-quality content to readers, who can then apply the knowledge to produce quality research. Besides, the need for multimodal information and the associated challenges are discussed with solutions. Additionally, ethical issues of using artificial intelligence in medical diagnosis is also discussed.

摘要

对医学专家而言,利用来自多个来源的信息是确诊的首选且更精确的方法。每个来源都提供了有关该疾病的关键信息,而这些信息在其他方式中可能并不存在。整合来自各种医学来源的信息可增强诊断过程中的信心,从而能够为患者制定有效的治疗方案。医学专家在疾病诊断方面的短缺促使了依赖多模态数据的自动诊断技术的发展。随着人工智能技术的进步,现在利用多模态融合技术进行自动诊断已成为可能。然而,多模态医学诊断的概念仍然很新,需要了解多模态数据的各个方面及其相关挑战。这篇综述文章探讨了多模态医学诊断的各个方面,为读者、学者和研究人员提供推进多模态医学研究所需的知识。研究中所选的文章经过了来自知名期刊和出版商的全面筛选,以便为读者提供高质量的内容,读者随后可应用这些知识来开展高质量的研究。此外,还讨论了多模态信息的需求以及相关挑战和解决方案。此外,还探讨了在医学诊断中使用人工智能的伦理问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/91e1bb0f9181/bioengineering-11-01233-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验