文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Multimodality Fusion Aspects of Medical Diagnosis: A Comprehensive Review.

作者信息

Kumar Sachin, Rani Sita, Sharma Shivani, Min Hong

机构信息

Akian College of Science and Engineering, American University of Armenia, Yerevan 0019, Armenia.

Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana 141006, India.

出版信息

Bioengineering (Basel). 2024 Dec 5;11(12):1233. doi: 10.3390/bioengineering11121233.


DOI:10.3390/bioengineering11121233
PMID:39768051
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11672922/
Abstract

Utilizing information from multiple sources is a preferred and more precise method for medical experts to confirm a diagnosis. Each source provides critical information about the disease that might otherwise be absent in other modalities. Combining information from various medical sources boosts confidence in the diagnosis process, enabling the creation of an effective treatment plan for the patient. The scarcity of medical experts to diagnose diseases motivates the development of automatic diagnoses relying on multimodal data. With the progress in artificial intelligence technology, automated diagnosis using multimodal fusion techniques is now possible. Nevertheless, the concept of multimodal medical diagnosis is still new and requires an understanding of the diverse aspects of multimodal data and its related challenges. This review article examines the various aspects of multimodal medical diagnosis to equip readers, academicians, and researchers with necessary knowledge to advance multimodal medical research. The chosen articles in the study underwent thorough screening from reputable journals and publishers to offer high-quality content to readers, who can then apply the knowledge to produce quality research. Besides, the need for multimodal information and the associated challenges are discussed with solutions. Additionally, ethical issues of using artificial intelligence in medical diagnosis is also discussed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/47ddb2205cf1/bioengineering-11-01233-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/91e1bb0f9181/bioengineering-11-01233-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/2dbcd3360125/bioengineering-11-01233-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/f506c9e3b69e/bioengineering-11-01233-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/f9be0ea2a84e/bioengineering-11-01233-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/2a620eed7f41/bioengineering-11-01233-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/fb5f30389f11/bioengineering-11-01233-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/bab748c81a88/bioengineering-11-01233-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/9f53f6f1b8ce/bioengineering-11-01233-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/b74c4d61a5af/bioengineering-11-01233-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/f16dabd398b4/bioengineering-11-01233-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/47ddb2205cf1/bioengineering-11-01233-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/91e1bb0f9181/bioengineering-11-01233-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/2dbcd3360125/bioengineering-11-01233-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/f506c9e3b69e/bioengineering-11-01233-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/f9be0ea2a84e/bioengineering-11-01233-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/2a620eed7f41/bioengineering-11-01233-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/fb5f30389f11/bioengineering-11-01233-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/bab748c81a88/bioengineering-11-01233-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/9f53f6f1b8ce/bioengineering-11-01233-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/b74c4d61a5af/bioengineering-11-01233-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/f16dabd398b4/bioengineering-11-01233-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb6/11672922/47ddb2205cf1/bioengineering-11-01233-g011.jpg

相似文献

[1]
Multimodality Fusion Aspects of Medical Diagnosis: A Comprehensive Review.

Bioengineering (Basel). 2024-12-5

[2]
Advancing healthcare through multimodal data fusion: a comprehensive review of techniques and applications.

PeerJ Comput Sci. 2024-10-30

[3]
Artificial intelligence-based methods for fusion of electronic health records and imaging data.

Sci Rep. 2022-10-26

[4]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[5]
A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics.

Comput Biol Med. 2022-5

[6]
Enhanced multimodal medical image fusion via modified DWT with arithmetic optimization algorithm.

Sci Rep. 2024-8-20

[7]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[8]
A review of deep learning-based information fusion techniques for multimodal medical image classification.

Comput Biol Med. 2024-7

[9]
[Research progress on electronic health records multimodal data fusion based on deep learning].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024-10-25

[10]
Data stewardship and curation practices in AI-based genomics and automated microscopy image analysis for high-throughput screening studies: promoting robust and ethical AI applications.

Hum Genomics. 2025-2-23

引用本文的文献

[1]
AI-Driven Transcriptome Prediction in Human Pathology: From Molecular Insights to Clinical Applications.

Biology (Basel). 2025-6-4

[2]
Stepping and tapping: combining motor tasks improves cognitive classification.

Geroscience. 2025-5-8

本文引用的文献

[1]
Transparency of artificial intelligence/machine learning-enabled medical devices.

NPJ Digit Med. 2024-1-26

[2]
Ethical implications of AI and robotics in healthcare: A review.

Medicine (Baltimore). 2023-12-15

[3]
Multimodal data fusion for cancer biomarker discovery with deep learning.

Nat Mach Intell. 2023-4

[4]
Clinically-Inspired Multi-Agent Transformers for Disease Trajectory Forecasting From Multimodal Data.

IEEE Trans Med Imaging. 2024-1

[5]
Medical transformer for multimodal survival prediction in intensive care: integration of imaging and non-imaging data.

Sci Rep. 2023-7-1

[6]
Cancer survival prediction by learning comprehensive deep feature representation for multiple types of genetic data.

BMC Bioinformatics. 2023-6-28

[7]
A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics.

Nat Biomed Eng. 2023-6

[8]
Multimodal deep learning to predict prognosis in adult and pediatric brain tumors.

Commun Med (Lond). 2023-3-29

[9]
Machine Learning Approaches to Understand Cognitive Phenotypes in People With HIV.

J Infect Dis. 2023-3-17

[10]
Pancancer survival prediction using a deep learning architecture with multimodal representation and integration.

Bioinform Adv. 2023-1-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索