Suppr超能文献

结合可再生电力与可再生碳:理解生物质衍生呋喃类化合物的反应机理以设计催化纳米材料。

Combining Renewable Electricity and Renewable Carbon: Understanding Reaction Mechanisms of Biomass-Derived Furanic Compounds for Design of Catalytic Nanomaterials.

作者信息

Ramos Nathanael C, Manyé Ibáñez Marc, Mittal Rupali, Janik Michael J, Holewinski Adam

机构信息

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States.

Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States.

出版信息

Acc Chem Res. 2023 Oct 3;56(19):2631-2641. doi: 10.1021/acs.accounts.3c00368. Epub 2023 Sep 17.

Abstract

ConspectusDespite the growing deployment of renewable energy conversion technologies, a number of large industrial sectors remain challenging to decarbonize. Aviation, heavy transport, and the production of steel, cement, and chemicals are heavily dependent on carbon-containing fuels and feedstocks. A hopeful avenue toward carbon neutrality is the implementation of renewable carbon for the synthesis of critical fuels, chemicals, and materials. Biomass provides an opportune source of renewable carbon, naturally capturing atmospheric CO and forming multicarbon linkages and useful chemical functional groups. The constituent molecules nonetheless require various chemical transformations, often best facilitated by catalytic nanomaterials, in order to access usable final products.Catalyzed transformations of renewable biomass compounds may intersect with renewable energy production by offering a means to utilize excess intermittent electricity and store it within chemical bonds. Electrochemical catalytic processes can often offer advantages in energy efficiency, product selectivity, and modular scalability compared to thermal-driven reactions. Electrocatalytic reactions with renewable carbon feedstocks can further enable related processes such as water splitting, where value-adding organic oxidation reactions may replace the evolution of oxygen. Organic electroreduction reactions may also allow desirable hydrogenations of bonds without intermediate formation of H and need for additional reactors.This Account highlights recent work aimed at gaining a fundamental understanding of transformations involving biomass-derived molecules in electrocatalytic nanomaterials. Particular emphasis is placed on the oxidation of biomass derived furanic compounds such as furfural and 5-hydroxymethylfurfural (HMF), which can yield value-added chemicals, including furoic acid (FA), maleic acid (MA), and 2,5-furandicarboxylic acid (FDCA) for renewable materials and other commodities. We highlight advanced implementations of online electrochemical mass spectrometry (OLEMS) and vibrational spectroscopies such as attenuated total reflectance surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS), combined with microkinetic models (MKMs) and quantum chemical calculations, to shed light on the elementary mechanistic pathways involved in electrochemical biomass conversion and how these paths are influenced by catalytic nanomaterials. Perspectives are given on the potential opportunities for materials development toward more efficient and selective carbon-mitigating reaction pathways.

摘要

综述

尽管可再生能源转换技术的应用日益广泛,但一些大型工业部门的脱碳仍面临挑战。航空、重型运输以及钢铁、水泥和化学品的生产严重依赖含碳燃料和原料。实现碳中和的一个有希望的途径是采用可再生碳来合成关键燃料、化学品和材料。生物质提供了一个合适的可再生碳源,它能自然捕获大气中的二氧化碳并形成多碳键和有用的化学官能团。然而,这些组成分子需要进行各种化学转化,通常借助催化纳米材料能最好地实现这些转化,以便获得可用的最终产品。

可再生生物质化合物的催化转化可能与可再生能源生产相交,因为它提供了一种利用过剩间歇性电力并将其存储在化学键中的方法。与热驱动反应相比,电化学催化过程通常在能源效率、产物选择性和模块可扩展性方面具有优势。使用可再生碳原料的电催化反应可以进一步实现相关过程,如水分解,其中增值有机氧化反应可以替代析氧反应。有机电还原反应还可以在不形成中间氢且无需额外反应器的情况下实现所需的键氢化反应。

本综述重点介绍了近期旨在深入理解电催化纳米材料中涉及生物质衍生分子转化的研究工作。特别强调了生物质衍生的呋喃类化合物(如糠醛和5 - 羟甲基糠醛(HMF))的氧化,这些氧化反应可以产生增值化学品,包括用于可再生材料和其他商品的糠酸(FA)、马来酸(MA)和2,5 - 呋喃二甲酸(FDCA)。我们重点介绍了在线电化学质谱(OLEMS)和振动光谱(如衰减全反射表面增强红外反射吸收光谱(ATR - SEIRAS))的先进应用,并结合微观动力学模型(MKMs)和量子化学计算,以阐明电化学生物质转化中涉及的基本机理途径以及这些途径如何受到催化纳米材料的影响。同时,还展望了材料开发在实现更高效、更具选择性的碳减排反应途径方面的潜在机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验