Suppr超能文献

有限规模脉冲神经网络的随机场描述。

A stochastic-field description of finite-size spiking neural networks.

作者信息

Dumont Grégory, Payeur Alexandre, Longtin André

机构信息

Group for Neural Theory, Ecole Normale Supérieure, 29 rue d'Ulm, 75005, Paris, France.

Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Canada.

出版信息

PLoS Comput Biol. 2017 Aug 7;13(8):e1005691. doi: 10.1371/journal.pcbi.1005691. eCollection 2017 Aug.

Abstract

Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity-the density of active neurons per unit time-is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics.

摘要

神经网络动力学受脉冲神经元之间相互作用的支配。单个神经元动力学的随机方面会向上传播至网络层面,并塑造群体的动力学和信息属性。群体活动的平均场模型忽略了网络动力学的有限尺寸随机波动,因此提供了对系统的确定性描述。在此,我们推导了一个随机偏微分方程(SPDE),用于描述有限尺寸不应期密度的时间演化,该密度表示在任何给定时间处于给定不应期状态的神经元比例。群体活动(即单位时间内活跃神经元的密度)可轻松从该不应期密度中提取。该SPDE通过在时间和不应期维度上起作用的二维高斯白噪声纳入了有限尺寸效应。对于无限数量的神经元,可恢复标准平均场理论。沿着其特征曲线对SPDE进行离散化,能够直接模拟大型但有限的脉冲网络的活动;这构成了我们方法的主要优势。相对于确定性异步状态对SPDE进行线性化,能够对有限尺寸活动波动进行理论研究。特别是,可获得活动波动的功率谱和自相关的解析表达式。此外,我们的方法可进行调整,以纳入多个相互作用的群体和准更新单个神经元动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ad/5560761/ec4b245c406d/pcbi.1005691.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验