Liu Haomiao, Teng Lu, Fan Linhua, Sun Yabin, Li Huiying
Jilin University, College of Computer Science and Technology, No. 2699 Qianjin Street, Changchun, Jilin province, 130012, China; Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, No. 2699 Qianjin Street, Changchun, Jilin province, 130012, China.
Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin province, 130021, China.
Comput Biol Med. 2023 May;157:106750. doi: 10.1016/j.compbiomed.2023.106750. Epub 2023 Mar 8.
Diabetic retinopathy(DR) is a common early diabetic complication and one of the main causes of blindness. In clinical diagnosis and treatment, regular screening with fundus imaging is an effective way to prevent the development of DR. However, the regular fundus images used in most DR screening work have a small imaging range, narrow field of vision, and can not contain more complete lesion information, which leads to less ideal automatic DR grading results. In order to improve the accuracy of DR grading, we establish a dataset containing 101 ultra-wide-field(UWF) DR fundus images and propose a deep learning(DL) automatic classification method based on a new preprocessing method. The emerging UWF fundus images have the advantages of a large imaging range and wide field of vision and contain more information about the lesions. In data preprocessing, we design a data denoising method for UWF images and use data enhancement methods to improve their contrast and brightness to improve the classification effect. In order to verify the efficiency of our dataset and the effectiveness of our preprocessing method, we design a series of experiments including a variety of DL classification models. The experimental results show that we can achieve high classification accuracy by using only the backbone model. The most basic ResNet50 model reaches an average of classification accuracy(ACA) 0.66, Macro F1 0.6559, and Kappa 0.58. The best-performing Swin-S model reaches ACA 0.72, Macro F1 0.7018, and Kappa 0.65. DR grading using UWF images can achieve higher accuracy and efficiency, which has practical significance and value in clinical applications.
糖尿病视网膜病变(DR)是常见的糖尿病早期并发症之一,也是失明的主要原因之一。在临床诊断和治疗中,通过眼底成像进行定期筛查是预防DR进展的有效方法。然而,大多数DR筛查工作中使用的常规眼底图像成像范围小、视野窄,无法包含更完整的病变信息,导致自动DR分级结果不太理想。为了提高DR分级的准确性,我们建立了一个包含101张超广角(UWF)DR眼底图像的数据集,并基于一种新的预处理方法提出了一种深度学习(DL)自动分类方法。新兴的UWF眼底图像具有成像范围大、视野宽的优点,并且包含更多关于病变的信息。在数据预处理中,我们设计了一种针对UWF图像的数据去噪方法,并使用数据增强方法来提高其对比度和亮度,以改善分类效果。为了验证我们数据集的有效性和预处理方法的有效性,我们设计了一系列实验,包括多种DL分类模型。实验结果表明,仅使用骨干模型就能实现较高的分类准确率。最基本的ResNet50模型平均分类准确率(ACA)达到0.66,宏F1值为0.6559,卡帕值为0.58。表现最佳的Swin-S模型ACA达到0.72,宏F1值为0.7018,卡帕值为0.65。使用UWF图像进行DR分级可以实现更高的准确性和效率,在临床应用中具有实际意义和价值。