Suppr超能文献

医学领域的大数据正在推动巨大变革。

Big data in medicine is driving big changes.

作者信息

Martin-Sanchez F, Verspoor K

机构信息

Fernando Martin-Sanchez, Health and Biomedical Informatics Centre, The University of Melbourne, Parkville VIC 3010, Australia, E-mail:

出版信息

Yearb Med Inform. 2014 Aug 15;9(1):14-20. doi: 10.15265/IY-2014-0020.

Abstract

OBJECTIVES

To summarise current research that takes advantage of "Big Data" in health and biomedical informatics applications.

METHODS

Survey of trends in this work, and exploration of literature describing how large-scale structured and unstructured data sources are being used to support applications from clinical decision making and health policy, to drug design and pharmacovigilance, and further to systems biology and genetics.

RESULTS

The survey highlights ongoing development of powerful new methods for turning that large-scale, and often complex, data into information that provides new insights into human health, in a range of different areas. Consideration of this body of work identifies several important paradigm shifts that are facilitated by Big Data resources and methods: in clinical and translational research, from hypothesis-driven research to data-driven research, and in medicine, from evidence-based practice to practice-based evidence.

CONCLUSIONS

The increasing scale and availability of large quantities of health data require strategies for data management, data linkage, and data integration beyond the limits of many existing information systems, and substantial effort is underway to meet those needs. As our ability to make sense of that data improves, the value of the data will continue to increase. Health systems, genetics and genomics, population and public health; all areas of biomedicine stand to benefit from Big Data and the associated technologies.

摘要

目标

总结当前在健康与生物医学信息学应用中利用“大数据”的研究。

方法

调查此项工作的趋势,并探究描述大规模结构化和非结构化数据源如何用于支持从临床决策和健康政策到药物设计与药物警戒,乃至系统生物学和遗传学等应用的文献。

结果

该调查突出了将大规模且通常复杂的数据转化为能在一系列不同领域为人类健康提供新见解的信息的强大新方法的持续发展。对这一系列工作的思考确定了由大数据资源和方法促成的几个重要范式转变:在临床和转化研究中,从假设驱动的研究转向数据驱动的研究;在医学中,从循证实践转向基于实践的证据。

结论

大量健康数据规模的不断扩大及其可得性,需要超出许多现有信息系统限制的数据管理、数据关联和数据整合策略,并且正在付出巨大努力来满足这些需求。随着我们理解这些数据的能力提高,数据的价值将持续增加。卫生系统、遗传学与基因组学、人口与公共卫生;生物医学的所有领域都有望从大数据及相关技术中受益。

相似文献

1
Big data in medicine is driving big changes.
Yearb Med Inform. 2014 Aug 15;9(1):14-20. doi: 10.15265/IY-2014-0020.
3
Big data and biomedical informatics: a challenging opportunity.
Yearb Med Inform. 2014 May 22;9(1):8-13. doi: 10.15265/IY-2014-0024.
4
Big Data Analytics in Medicine and Healthcare.
J Integr Bioinform. 2018 May 10;15(3):20170030. doi: 10.1515/jib-2017-0030.
5
Big data - smart health strategies. Findings from the yearbook 2014 special theme.
Yearb Med Inform. 2014 Aug 15;9(1):48-51. doi: 10.15265/IY-2014-0031.
6
Big data for health.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1193-208. doi: 10.1109/JBHI.2015.2450362. Epub 2015 Jul 10.
7
Translational medicine in the Age of Big Data.
Brief Bioinform. 2019 Mar 22;20(2):457-462. doi: 10.1093/bib/bbx116.
9
"Big data" and the electronic health record.
Yearb Med Inform. 2014 Aug 15;9(1):97-104. doi: 10.15265/IY-2014-0003.
10
Translational Bioinformatics and Clinical Research (Biomedical) Informatics.
Surg Pathol Clin. 2015 Jun;8(2):269-88. doi: 10.1016/j.path.2015.02.015. Epub 2015 Mar 31.

引用本文的文献

2
Role of artificial intelligence in revolutionizing drug discovery.
Fundam Res. 2024 May 9;5(3):1273-1287. doi: 10.1016/j.fmre.2024.04.021. eCollection 2025 May.
3
Data Privacy in Medical Informatics and Electronic Health Records: A Bibliometric Analysis.
Health Care Anal. 2025 May 14. doi: 10.1007/s10728-025-00519-0.
4
Using artificial intelligence to develop a measure of orthopaedic treatment success from clinical notes.
Front Digit Health. 2025 Apr 24;7:1523953. doi: 10.3389/fdgth.2025.1523953. eCollection 2025.
6
AI model for predicting asthma prognosis in children.
J Allergy Clin Immunol Glob. 2025 Jan 31;4(2):100429. doi: 10.1016/j.jacig.2025.100429. eCollection 2025 May.
7
Natural Language Processing: Set to Transform Pediatric Research.
Hosp Pediatr. 2025 Jan 1;15(1):e12-e14. doi: 10.1542/hpeds.2024-008115.
8
AI in interventional cardiology: Innovations and challenges.
Heliyon. 2024 Aug 26;10(17):e36691. doi: 10.1016/j.heliyon.2024.e36691. eCollection 2024 Sep 15.

本文引用的文献

2
Natural language processing in biomedicine: a unified system architecture overview.
Methods Mol Biol. 2014;1168:275-94. doi: 10.1007/978-1-4939-0847-9_16.
3
Data-driven medicinal chemistry in the era of big data.
Drug Discov Today. 2014 Jul;19(7):859-68. doi: 10.1016/j.drudis.2013.12.004. Epub 2013 Dec 17.
4
Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value.
PLoS One. 2013 Dec 12;8(12):e82314. doi: 10.1371/journal.pone.0082314. eCollection 2013.
5
DIVE: a data intensive visualization engine.
Bioinformatics. 2014 Feb 15;30(4):593-5. doi: 10.1093/bioinformatics/btt721. Epub 2013 Dec 13.
6
Influenza-like illness surveillance on Twitter through automated learning of naïve language.
PLoS One. 2013 Dec 4;8(12):e82489. doi: 10.1371/journal.pone.0082489. eCollection 2013.
7
Mining the ultimate phenome repository.
Nat Biotechnol. 2013 Dec;31(12):1095-7. doi: 10.1038/nbt.2757.
9
Privacy-by-Design: Understanding Data Access Models for Secondary Data.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:126-30. eCollection 2013.
10
Leverage hadoop framework for large scale clinical informatics applications.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:53. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验