Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, 695014, India.
Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India.
Cell Mol Biol Lett. 2023 Mar 18;28(1):22. doi: 10.1186/s11658-023-00436-x.
Cerebral arteriovenous malformations (cAVM) are a significant cause of intracranial hemorrhagic stroke and brain damage. The arteriovenous junctions in AVM nidus are known to have hemodynamic disturbances such as altered shear stress, which could lead to endothelial dysfunction. The molecular mechanisms coupling shear stress and endothelial dysfunction in cAVMs are poorly understood. We speculated that disturbed blood flow in artery-vein junctions activates Notch receptors and promotes endothelial mesenchymal plasticity during cAVM formation.
We investigated the expression profile of endothelial mesenchymal transition (EndMT) and cell adhesion markers, as well as activated Notch receptors, in 18 human cAVM samples and 15 control brain tissues, by quantitative real-time PCR (qRT-PCR) and immunohistochemical evaluation. Employing a combination of a microfluidic system, qRT-PCR, immunofluorescence, as well as invasion and inhibitor assays, the effects of various shear stress conditions on Notch-induced EndMT and invasive potential of human cerebral microvascular endothelial cells (hCMEC/d3) were analyzed.
We found evidence for EndMT and enhanced expression of activated Notch intracellular domain (NICD3 and NICD4) in human AVM nidus samples. The expression of transmembrane adhesion receptor integrin α9/β1 is significantly reduced in cAVM nidal vessels. Cell-cell adhesion proteins such as VE-cadherin and N-cadherin were differentially expressed in AVM nidus compared with control brain tissues. Using well-characterized hCMECs, we show that altered fluid shear stress steers Notch3 nuclear translocation and promotes SNAI1/2 expression and nuclear localization. Oscillatory flow downregulates integrin α9/β1 and VE-cadherin expression, while N-cadherin expression and endothelial cell invasiveness are augmented. Gamma-secretase inhibitor RO4929097, and to a lesser level DAPT, prevent the mesenchymal transition and invasiveness of cerebral microvascular endothelial cells exposed to oscillatory fluid flow.
Our study provides, for the first time, evidence for the role of oscillatory shear stress in mediating the EndMT process and dysregulated expression of cell adhesion molecules, especially multifunctional integrin α9/β1 in human cAVM nidus. Concomitantly, our findings indicate the potential use of small-molecular inhibitors such as RO4929097 in the less-invasive therapeutic management of cAVMs.
脑动静脉畸形(cAVM)是颅内出血性卒中及脑损伤的重要病因。动静脉畸形核内的动静脉连接已知存在血流动力学紊乱,如剪切力改变,这可能导致血管内皮功能障碍。cAVM 中连接剪切力和血管内皮功能障碍的分子机制尚不清楚。我们推测,动脉静脉连接的血流紊乱激活 Notch 受体,并在 cAVM 形成过程中促进血管内皮间充质转化。
通过定量实时 PCR(qRT-PCR)和免疫组织化学评估,我们研究了 18 例人 cAVM 样本和 15 例对照脑组织中内皮间充质转化(EndMT)和细胞黏附标志物的表达谱,以及激活的 Notch 受体。我们采用微流控系统、qRT-PCR、免疫荧光以及侵袭和抑制剂检测,分析了各种剪切力条件对 Notch 诱导的人脑血管内皮细胞(hCMEC/d3)EndMT 和侵袭潜能的影响。
我们在人 AVM 核内样本中发现了 EndMT 的证据,并证实激活的 Notch 细胞内结构域(NICD3 和 NICD4)表达增强。cAVM 核内血管中跨膜黏附受体整合素 α9/β1 的表达显著降低。与对照脑组织相比,细胞间黏附蛋白如 VE-钙黏蛋白和 N-钙黏蛋白在 AVM 核内的表达存在差异。利用特征明确的 hCMEC,我们表明,改变的流体剪切力引导 Notch3 核转位,并促进 SNAI1/2 的表达和核定位。振荡流下调整合素 α9/β1 和 VE-钙黏蛋白的表达,同时增加 N-钙黏蛋白的表达和内皮细胞的侵袭性。γ-分泌酶抑制剂 RO4929097,以及在较小程度上的 DAPT,可防止暴露于振荡液流中的脑微血管内皮细胞发生间质转化和侵袭。
本研究首次提供了证据,证明振荡剪切力在介导 EndMT 过程和调节细胞黏附分子的表达中发挥作用,尤其是多功能整合素 α9/β1 在人 cAVM 核内。同时,我们的研究结果表明,小分子抑制剂如 RO4929097 在侵袭性较小的 cAVM 治疗管理中具有潜在用途。