Liu Yiping, Xing Pengyao
Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
Adv Mater. 2023 Dec;35(49):e2300968. doi: 10.1002/adma.202300968. Epub 2023 Oct 29.
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
光矢量末端沿圆周轨迹传播的圆偏振光(CPL)具有左旋和右旋性,它通过复杂的CPL-物质相互作用将手性信息传递给材料。具有圆二色性的材料对CPL照射有选择性响应,其差异输出可用于设计新型光探测器。外消旋或非手性化合物在CPL作用下会经历光破坏、光拆分和不对称合成途径,从而产生对映体偏向和光学活性。通过这种策略,可以直接合成螺旋聚合物和手性无机等离子体纳米结构,并且它们的分子内折叠和随后的自组装也可进行光调制。在自组装和液晶相的聚集状态下,动态分子堆积的螺旋方向对CPL带来的对映体偏向敏感,从而实现手性放大到超分子尺度。在这篇综述中,旨在系统地总结和讨论CPL响应材料的应用导向设计策略。基于过去几十年的重要进展,重点介绍了小分子有机化合物、聚合物、无机纳米颗粒、超分子组装体和液晶的不对称合成、拆分和性质调制。此外,还提及了包括CPL检测和生物医学应用在内的光-物质相互作用的应用。