Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China.
J Am Chem Soc. 2023 Jun 21;145(24):12951-12966. doi: 10.1021/jacs.3c01122. Epub 2023 Jun 5.
Circularly polarized luminescence (CPL) is attracting much interest because it can carry extensive optical information. CPL shows left- or right-handedness and can be regarded as part of high-level visual perception to supply an extra dimension of information with regard to regular light. A key to meeting the needs for practical applications is to develop the emerging field of ultra-dissymmetric CPL. Chiral liquid crystal (LC) assemblies─otherwise referred to as cholesteric liquid crystals (CLCs)─are essentially organized helical superstructures with a highly ordered one-dimensional orientation, and distinctly superior to regular helical supramolecules. CLCs can achieve a perfect equilibrium of molecular short-range interaction and long-range orientational order, enabling molecule-scale chirality on a helical pitch and observable scale. LC assembly could be an ideal strategy for amplifying chirality, making it accessible to ultra-dissymmetric CPL. Herein, we focused on some basic but important issues regarding CPL: (i) How can CPL be created from chiral dyes? (ii) Is the chirality of luminescent dyes an essential factor for the generation of CPL? That is, can all chiral dyes emit CPL and vice versa? (iii) How can CPL be transferred within intermolecular systems, and what principles of CPL transmission should be followed? Given these queries and our work, in this Perspective we discuss the generation, transmission, and modulation of CPL with chiral LC assembly, aiming to design and build up novel chiroptical materials. Recent applications of CPL-active LC microstructures in three-dimensional displays, circularly polarized lasers, and asymmetric catalysis are also discussed.
圆偏振发光(CPL)因其能够携带广泛的光学信息而备受关注。CPL 表现出左旋或右旋性,可以被视为高级视觉感知的一部分,提供有关常规光的额外信息维度。满足实际应用需求的关键是发展新兴的超高不对称 CPL 领域。手性液晶(LC)组装体——也称为胆甾相液晶(CLC)——本质上是具有高度有序一维取向的螺旋超结构,明显优于常规螺旋超分子。CLC 可以实现分子短程相互作用和长程取向有序的完美平衡,使分子尺度的手性在螺旋螺距和可观察的尺度上得以实现。LC 组装可能是放大手性的理想策略,使其能够实现超高不对称 CPL。在此,我们重点关注 CPL 的一些基本但重要的问题:(i)CPL 如何由手性染料产生?(ii)发光染料的手性是否是产生 CPL 的必要因素?也就是说,所有手性染料都能发射 CPL 吗,反之亦然?(iii)CPL 如何在分子间系统中传递,CPL 传递应遵循哪些原则?基于这些疑问和我们的工作,在本观点文章中,我们讨论了手性 LC 组装体的 CPL 的产生、传递和调制,旨在设计和构建新型的手性光学材料。还讨论了 CPL 活性 LC 微结构在三维显示、圆偏振激光和不对称催化中的最新应用。