Suppr超能文献

从因果关系的角度看连续特征的进化博弈论。

Evolutionary game theory of continuous traits from a causal perspective.

机构信息

Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland.

Department of Philosophy, Kyoto University, Yoshida-Hommachi, 606-8501 Kyoto, Japan.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2023 May 8;378(1876):20210507. doi: 10.1098/rstb.2021.0507. Epub 2023 Mar 20.

Abstract

Modern evolutionary game theory typically deals with the evolution of continuous, quantitative traits under weak selection, allowing the incorporation of rich biological detail and complicated nonlinear interactions. While these models are commonly used to find candidates for evolutionary endpoints and to approximate evolutionary trajectories, a less appreciated property is their potential to expose and clarify the causal structure of evolutionary processes. The mathematical step of differentiation breaks a nonlinear model into additive components which are more intuitive to interpret, and when combined with a proper causal hypothesis, partial derivatives in such models have a causal meaning. Such an approach has been used in the causal analysis of game-theoretical models in an informal manner. Here we formalize this approach by linking evolutionary game theory to concepts developed in causal modelling over the past century, from path coefficients to the recently proposed causal derivative. There is a direct correspondence between the causal derivative and the derivative used in evolutionary game theory. Some game theoretical models (e.g. kin selection) consist of multiple causal derivatives. Components of these derivatives correspond to components of the causal derivative, to path coefficients, and to edges on a causal graph, formally linking evolutionary game theory to causal modelling. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.

摘要

现代进化博弈论通常处理的是在弱选择下连续的、定量特征的进化,允许纳入丰富的生物学细节和复杂的非线性相互作用。虽然这些模型通常用于寻找进化终点的候选者,并近似进化轨迹,但一个不太被重视的特性是它们有可能揭示和阐明进化过程的因果结构。微分的数学步骤将非线性模型分解为可加的成分,这些成分更易于解释,并且当与适当的因果假设结合使用时,这些模型中的偏导数具有因果意义。这种方法已以一种非正式的方式用于博弈论模型的因果分析。在这里,我们通过将进化博弈论与过去一个世纪中因果建模中发展的概念联系起来,从路径系数到最近提出的因果导数,来正式化这种方法。因果导数与进化博弈论中使用的导数之间存在直接对应关系。一些博弈论模型(例如亲缘选择)由多个因果导数组成。这些导数的组成部分对应于因果导数的组成部分、路径系数和因果图上的边,正式将进化博弈论与因果建模联系起来。本文是主题为“半个世纪的进化博弈论:理论、应用和未来方向的综合”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1174/10024988/4d6e5fa406f8/rstb20210507f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验