Am J Epidemiol. 2023 Jul 7;192(7):1166-1180. doi: 10.1093/aje/kwad061.
Pneumococcal conjugate vaccines (PCVs) protect against diseases caused by Streptococcus pneumoniae, such as meningitis, bacteremia, and pneumonia. It is challenging to estimate their population-level impact due to the lack of a perfect control population and the subtleness of signals when the endpoint-such as all-cause pneumonia-is nonspecific. Here we present a new approach for estimating the impact of PCVs: using least absolute shrinkage and selection operator (LASSO) regression to select variables in a synthetic control model to predict the counterfactual outcome for vaccine impact inference. We first used a simulation study based on hospitalization data from Mexico (2000-2013) to test the performance of LASSO and established methods, including the synthetic control model with Bayesian variable selection (SC). We found that LASSO achieved accurate and precise estimation, even in complex simulation scenarios where the association between the outcome and all control variables was noncausal. We then applied LASSO to real-world hospitalization data from Chile (2001-2012), Ecuador (2001-2012), Mexico (2000-2013), and the United States (1996-2005), and found that it yielded estimates of vaccine impact similar to SC. The LASSO method is accurate and easily implementable and can be applied to study the impact of PCVs and other vaccines.
肺炎球菌结合疫苗(PCV)可预防肺炎链球菌引起的疾病,如脑膜炎、菌血症和肺炎。由于缺乏完美的对照人群,以及终点(如全因肺炎)不特异时信号的微妙性,因此很难估计其人群水平的影响。在这里,我们提出了一种估计 PCV 影响的新方法:使用最小绝对收缩和选择算子(LASSO)回归在合成控制模型中选择变量,以预测疫苗影响推断的反事实结果。我们首先使用基于墨西哥住院数据(2000-2013 年)的模拟研究来测试 LASSO 和已建立方法的性能,包括具有贝叶斯变量选择的合成控制模型(SC)。我们发现,即使在结局与所有对照变量之间存在非因果关系的复杂模拟场景中,LASSO 也能实现准确和精确的估计。然后,我们将 LASSO 应用于智利(2001-2012 年)、厄瓜多尔(2001-2012 年)、墨西哥(2000-2013 年)和美国(1996-2005 年)的真实住院数据,并发现它产生的疫苗影响估计与 SC 相似。LASSO 方法准确且易于实施,可用于研究 PCV 和其他疫苗的影响。