Suppr超能文献

利用机器学习算法预测长沙市消防员创伤后应激障碍风险。

Using machine learning algorithm to predict the risk of post-traumatic stress disorder among firefighters in Changsha.

机构信息

Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410011.

Health Management Center, Second Xiangya Hospital, Central South University, Changsha 410011, China.

出版信息

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023 Jan 28;48(1):84-91. doi: 10.11817/j.issn.1672-7347.2023.220067.

Abstract

OBJECTIVES

Firefighters are prone to suffer from psychological trauma and post-traumatic stress disorder (PTSD) in the workplace, and have a poor prognosis after PTSD. Reliable models for predicting PTSD allow for effective identification and intervention for patients with early PTSD. By collecting the psychological traits, psychological states and work situations of firefighters, this study aims to develop a machine learning algorithm with the aim of effectively and accurately identifying the onset of PTSD in firefighters, as well as detecting some important predictors of PTSD onset.

METHODS

This study conducted a cross-sectional survey through convenient sampling of firefighters from 20 fire brigades in Changsha, which were evenly distributed across 6 districts and Changsha County, with a total of 628 firefighters. We used the synthetic minority oversampling technique (SMOTE) to process data sets and used grid search to finish the parameter tuning. The predictive capability of several commonly used machine learning models was compared by 5-fold cross-validation and using the area under the receiver operating characteristic curve (ROC-AUC), accuracy, precision, recall, and F1 score.

RESULTS

The random forest model achieved good performance in predicting PTSD with an average AUC score at 0.790. The mean accuracy of the model was 90.1%, with an F1 score of 0.945. The three most important predictors were perseverance, forced thinking, and reflective deep thinking, with weights of 0.165, 0.158, and 0.152, respectively. The next most important predictors were employment time, psychological power, and optimism.

CONCLUSIONS

PTSD onset prediction model for Changsha firefighters constructed by random forest has strong predictive ability, and both psychological characteristics and work situation can be used as predictors of PTSD onset risk for firefighters. In the next step of the study, validation using other large datasets is needed to ensure that the predictive models can be used in clinical setting.

摘要

目的

消防员在工作场所中容易遭受心理创伤和创伤后应激障碍(PTSD),且 PTSD 后预后较差。可靠的 PTSD 预测模型可实现对早期 PTSD 患者的有效识别和干预。本研究通过收集消防员的心理特征、心理状态和工作情况,旨在开发一种机器学习算法,以有效、准确地识别消防员 PTSD 的发病,并检测 PTSD 发病的一些重要预测因素。

方法

本研究通过方便抽样,对长沙市 20 个消防队的消防员进行了横断面调查,这些消防队均匀分布在长沙市的 6 个区和长沙县,共有 628 名消防员。我们使用合成少数过采样技术(SMOTE)处理数据集,并使用网格搜索完成参数调整。通过 5 折交叉验证和使用接收者操作特征曲线下面积(ROC-AUC)、准确性、精度、召回率和 F1 评分,比较了几种常用机器学习模型的预测能力。

结果

随机森林模型在预测 PTSD 方面表现良好,平均 AUC 评分为 0.790。模型的平均准确率为 90.1%,F1 评分为 0.945。三个最重要的预测因素分别是坚韧性、强迫思维和反思性深思,权重分别为 0.165、0.158 和 0.152。其次重要的预测因素是工作时间、心理力量和乐观主义。

结论

由随机森林构建的长沙市消防员 PTSD 发病预测模型具有较强的预测能力,心理特征和工作情况均可作为消防员 PTSD 发病风险的预测因素。在下一步的研究中,需要使用其他大型数据集进行验证,以确保预测模型可用于临床实践。

相似文献

6
Predicting posttraumatic stress disorder following a natural disaster.预测自然灾害后的创伤后应激障碍。
J Psychiatr Res. 2018 Jan;96:15-22. doi: 10.1016/j.jpsychires.2017.09.010. Epub 2017 Sep 8.

本文引用的文献

3
Complex post-traumatic stress disorder.复杂性创伤后应激障碍。
Lancet. 2022 Jul 2;400(10345):60-72. doi: 10.1016/S0140-6736(22)00821-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验