Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA.
Transl Psychiatry. 2021 Apr 20;11(1):227. doi: 10.1038/s41398-021-01324-8.
We sought to find clinical subtypes of posttraumatic stress disorder (PTSD) in veterans 6-10 years post-trauma exposure based on current symptom assessments and to examine whether blood biomarkers could differentiate them. Samples were males deployed to Iraq and Afghanistan studied by the PTSD Systems Biology Consortium: a discovery sample of 74 PTSD cases and 71 healthy controls (HC), and a validation sample of 26 PTSD cases and 36 HC. A machine learning method, random forests (RF), in conjunction with a clustering method, partitioning around medoids, were used to identify subtypes derived from 16 self-report and clinician assessment scales, including the clinician-administered PTSD scale for DSM-IV (CAPS). Two subtypes were identified, designated S1 and S2, differing on mean current CAPS total scores: S2 = 75.6 (sd 14.6) and S1 = 54.3 (sd 6.6). S2 had greater symptom severity scores than both S1 and HC on all scale items. The mean first principal component score derived from clinical summary scales was three times higher in S2 than in S1. Distinct RFs were grown to classify S1 and S2 vs. HCs and vs. each other on multi-omic blood markers feature classes of current medical comorbidities, neurocognitive functioning, demographics, pre-military trauma, and psychiatric history. Among these classes, in each RF intergroup comparison of S1, S2, and HC, multi-omic biomarkers yielded the highest AUC-ROCs (0.819-0.922); other classes added little to further discrimination of the subtypes. Among the top five biomarkers in each of these RFs were methylation, micro RNA, and lactate markers, suggesting their biological role in symptom severity.
我们试图根据当前的症状评估,在创伤后 6-10 年的退伍军人中找到创伤后应激障碍(PTSD)的临床亚型,并研究血液生物标志物是否可以区分它们。样本是由 PTSD 系统生物学联盟研究的被派往伊拉克和阿富汗的男性士兵:一个由 74 例 PTSD 病例和 71 例健康对照(HC)组成的发现样本,以及一个由 26 例 PTSD 病例和 36 例 HC 组成的验证样本。我们使用一种机器学习方法——随机森林(RF),结合聚类方法——中位数分区,从 16 种自我报告和临床评估量表中识别出亚型,包括用于 DSM-IV 的临床管理 PTSD 量表(CAPS)。确定了两种亚型,分别命名为 S1 和 S2,它们在当前 CAPS 总分的平均值上有所不同:S2=75.6(标准差 14.6)和 S1=54.3(标准差 6.6)。S2 在所有量表项目上的症状严重程度评分均高于 S1 和 HC。来自临床综合量表的第一主成分得分在 S2 中比在 S1 中高 3 倍。在当前的医学合并症、神经认知功能、人口统计学、军事前创伤和精神病史等多组学血液标志物特征类别的 S1 和 S2 与 HC 以及彼此之间的分类中,分别生长出不同的 RF。在这些类别的每一个 RF 组间比较中,多组学生物标志物的 AUC-ROC 最高(0.819-0.922);其他类别对亚型的进一步区分作用不大。在这些 RF 中的每一个的前五个最佳生物标志物中,都有甲基化、microRNA 和乳酸生物标志物,表明它们在症状严重程度方面的生物学作用。