Cucchi Matteo, Gruener Christopher, Petrauskas Lautaro, Steiner Peter, Tseng Hsin, Fischer Axel, Penkovsky Bogdan, Matthus Christian, Birkholz Peter, Kleemann Hans, Leo Karl
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany.
Chair for Circuit Design and Network Theory (CCN), Technische Universität Dresden, Helmholtzstr. 18, 01069 Dresden, Germany.
Sci Adv. 2021 Aug 18;7(34). doi: 10.1126/sciadv.abh0693. Print 2021 Aug.
Early detection of malign patterns in patients' biological signals can save millions of lives. Despite the steady improvement of artificial intelligence-based techniques, the practical clinical application of these methods is mostly constrained to an offline evaluation of the patients' data. Previous studies have identified organic electrochemical devices as ideal candidates for biosignal monitoring. However, their use for pattern recognition in real time was never demonstrated. Here, we produce and characterize brain-inspired networks composed of organic electrochemical transistors and use them for time-series predictions and classification tasks using the reservoir computing approach. To show their potential use for biofluid monitoring and biosignal analysis, we classify four classes of arrhythmic heartbeats with an accuracy of 88%. The results of this study introduce a previously unexplored paradigm for biocompatible computational platforms and may enable development of ultralow-power consumption hardware-based artificial neural networks capable of interacting with body fluids and biological tissues.
早期检测患者生物信号中的恶性模式可挽救数百万人的生命。尽管基于人工智能的技术不断进步,但这些方法在实际临床应用中大多局限于对患者数据的离线评估。先前的研究已将有机电化学装置确定为生物信号监测的理想候选者。然而,其在实时模式识别中的应用从未得到证实。在此,我们制造并表征了由有机电化学晶体管组成的受脑启发网络,并使用储层计算方法将其用于时间序列预测和分类任务。为展示其在生物流体监测和生物信号分析中的潜在用途,我们对四类心律失常心跳进行分类,准确率达88%。本研究结果引入了一种此前未被探索的生物相容性计算平台范式,并可能推动基于超低功耗硬件的人工神经网络的开发,使其能够与体液和生物组织相互作用。