Scheepers Daniëlle, Casimiro Anna, Borneman Zandrie, Nijmeijer Kitty
Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.
ACS Appl Polym Mater. 2023 Feb 10;5(3):2032-2042. doi: 10.1021/acsapm.2c02078. eCollection 2023 Mar 10.
Layer-by-layer (LbL) assembly of the alternating adsorption of oppositely charged polyions is an extensively studied method to produce nanofiltration membranes. In this work, the concept of chaotropicity of the polycation and its counterion is introduced in the LbL field. In general, the more chaotropic a polyion, the lower its effective charge, charge availability, and hydrophilicity. Here, this is researched for the well-known PDADMAC (polydiallyldimethylammonium chloride) and PAH (poly(allylamine) hydrochloride), and the synthesized PAMA (polyallylmultimethylammonium), with two different counterions (I and Cl). Higher chaotropicity (PDADMAC > PAMA-I > PAMA-Cl > PAH) translates into a reduced charge availability and a more pronounced extrinsic charge compensation, resulting in more mass adsorption and a higher pure water permeability. PAMA-containing membranes show the most interesting results in the series. Due to its molecular structure, the chaotropicity of this polycation perfectly lies between PDADMAC and PAH. Overall, the chaotropicity of PAMA membranes allows for the formation of the right balance between extrinsic and intrinsic charge compensation with PSS. Moreover, modifying the nature of the counterions of PAMA (I or Cl) allows to tune the density of the multilayer and results in lower size exclusion abilities with PAMA-I compared to PAMA-Cl (higher MWCO and lower MgSO retention). In general, the contextualization of the polyion interaction within the specific (poly)ion effects expands the understanding of the influence of the charge density of polycations without ignoring the chemical nature of the functional groups in their monomer units.
通过交替吸附带相反电荷的聚离子进行逐层(LbL)组装是一种被广泛研究的制备纳滤膜的方法。在这项工作中,在LbL领域引入了聚阳离子及其抗衡离子的离液序列性质的概念。一般来说,聚离子的离液序列性质越强,其有效电荷、电荷可及性和亲水性就越低。在此,针对著名的聚二烯丙基二甲基氯化铵(PDADMAC)和聚烯丙胺盐酸盐(PAH),以及合成的聚烯丙基多甲基氯化铵(PAMA),研究了两种不同抗衡离子(I和Cl)的情况。更高的离液序列性质(PDADMAC > PAMA - I > PAMA - Cl > PAH)会导致电荷可及性降低和更显著的外在电荷补偿,从而产生更多的质量吸附和更高的纯水渗透率。含PAMA的膜在该系列中表现出最有趣的结果。由于其分子结构,这种聚阳离子的离液序列性质恰好介于PDADMAC和PAH之间。总体而言,PAMA膜的离液序列性质使得在与聚磺酸盐(PSS)进行外在和内在电荷补偿之间能够形成恰当的平衡。此外,改变PAMA的抗衡离子性质(I或Cl)可以调节多层膜的密度,与PAMA - Cl相比,PAMA - I导致更低的尺寸排阻能力(更高的截留分子量和更低的硫酸镁截留率)。一般来说,在特定(聚)离子效应的背景下对聚离子相互作用进行情境化,能够在不忽视聚阳离子单体单元中官能团化学性质的情况下,扩展对聚阳离子电荷密度影响的理解。