Suppr超能文献

可变剪接在塑造耳蜗分子格局中的作用

Alternative splicing in shaping the molecular landscape of the cochlea.

作者信息

Kim Kwan Soo, Koo Hei Yeun, Bok Jinwoong

机构信息

Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.

Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

Front Cell Dev Biol. 2023 Mar 2;11:1143428. doi: 10.3389/fcell.2023.1143428. eCollection 2023.

Abstract

The cochlea is a complex organ comprising diverse cell types with highly specialized morphology and function. Until now, the molecular underpinnings of its specializations have mostly been studied from a transcriptional perspective, but accumulating evidence points to post-transcriptional regulation as a major source of molecular diversity. Alternative splicing is one of the most prevalent and well-characterized post-transcriptional regulatory mechanisms. Many molecules important for hearing, such as cadherin 23 or harmonin, undergo alternative splicing to produce functionally distinct isoforms. Some isoforms are expressed specifically in the cochlea, while some show differential expression across the various cochlear cell types and anatomical regions. Clinical phenotypes that arise from mutations affecting specific splice variants testify to the functional relevance of these isoforms. All these clues point to an essential role for alternative splicing in shaping the unique molecular landscape of the cochlea. Although the regulatory mechanisms controlling alternative splicing in the cochlea are poorly characterized, there are animal models with defective splicing regulators that demonstrate the importance of RNA-binding proteins in maintaining cochlear function and cell survival. Recent technological breakthroughs offer exciting prospects for overcoming some of the long-standing hurdles that have complicated the analysis of alternative splicing in the cochlea. Efforts toward this end will help clarify how the remarkable diversity of the cochlear transcriptome is both established and maintained.

摘要

耳蜗是一个复杂的器官,由具有高度特化形态和功能的多种细胞类型组成。到目前为止,其特化的分子基础大多是从转录角度进行研究的,但越来越多的证据表明转录后调控是分子多样性的主要来源。可变剪接是最普遍且特征明确的转录后调控机制之一。许多对听力重要的分子,如钙黏蛋白23或harmonin,会经历可变剪接以产生功能不同的异构体。一些异构体在耳蜗中特异性表达,而一些则在不同的耳蜗细胞类型和解剖区域表现出差异表达。由影响特定剪接变体的突变引起的临床表型证明了这些异构体的功能相关性。所有这些线索都表明可变剪接在塑造耳蜗独特的分子格局中起着至关重要的作用。尽管控制耳蜗中可变剪接的调控机制尚不明确,但有一些剪接调节因子缺陷的动物模型证明了RNA结合蛋白在维持耳蜗功能和细胞存活中的重要性。最近的技术突破为克服一些长期以来使耳蜗可变剪接分析复杂化的障碍提供了令人兴奋的前景。为此所做的努力将有助于阐明耳蜗转录组的显著多样性是如何建立和维持的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b60a/10018040/af21946f2410/fcell-11-1143428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验