Suppr超能文献

计算模板的局部性如何?一种机器学习方法。

How localized are computational templates? A machine learning approach.

作者信息

Noichl Maximilian

机构信息

Faculty of Philosophy and Education, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria.

Faculty for Social Sciences and Economics, University of Bamberg, Feldkirchenstraße 21, 96045 Bamberg, Germany.

出版信息

Synthese. 2023;201(3):107. doi: 10.1007/s11229-023-04057-x. Epub 2023 Mar 13.

Abstract

A commonly held background assumption about the sciences is that they connect along borders characterized by ontological or explanatory relationships, usually given in the order of mathematics, physics, chemistry, biology, psychology, and the social sciences. Interdisciplinary work, in this picture, arises in the connecting regions of adjacent disciplines. Philosophical research into interdisciplinary model transfer has increasingly complicated this picture by highlighting additional connections orthogonal to it. But most of these works have been done through case studies, which due to their strong focus struggle to provide foundations for claims about large-scale relations between multiple scientific disciplines. As a supplement, in this contribution, we propose to philosophers of science the use of modern science mapping techniques to trace connections between modeling techniques in large literature samples. We explain in detail how these techniques work, and apply them to a large, contemporary, and multidisciplinary data set (n=383.961 articles). Through the comparison of textual to mathematical representations, we suggest formulaic structures that are particularly common among different disciplines and produce first results indicating the general strength and commonality of such relationships.

摘要

关于科学,一个普遍的背景假设是,它们沿着以本体论或解释性关系为特征的边界相互联系,这些关系通常按照数学、物理学、化学、生物学、心理学和社会科学的顺序排列。在这种情况下,跨学科工作出现在相邻学科的连接区域。对跨学科模型转移的哲学研究通过强调与之正交的额外联系,使这幅图景日益复杂。但这些工作大多是通过案例研究完成的,由于它们的重点过于突出,难以提供关于多个科学学科之间大规模关系的主张的基础。作为补充,在本论文中,我们向科学哲学家提议使用现代科学映射技术来追踪大型文献样本中建模技术之间的联系。我们详细解释了这些技术的工作原理,并将它们应用于一个大型、当代且多学科的数据集(n = 383,961篇文章)。通过文本表示与数学表示的比较,我们提出了在不同学科中特别常见的公式化结构,并得出了初步结果,表明了这种关系的总体强度和共性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b54/10009358/a1efa3be1bcb/11229_2023_4057_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验