Suppr超能文献

全球重症肌无力发展趋势的知识图谱:文献计量分析。

Knowledge mapping of global trends for myasthenia gravis development: A bibliometrics analysis.

机构信息

Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.

The Second Brigade of Cadet, Basic Medical School, Air Force Military Medical University, Xi'an Shaanxi, China.

出版信息

Front Immunol. 2023 Mar 2;14:1132201. doi: 10.3389/fimmu.2023.1132201. eCollection 2023.

Abstract

BACKGROUND

Myasthenia gravis (MG) is an autoimmune disease with acquired neuromuscular junction transmission disorders. In the last two decades, various pathogenesis, application of immunosuppressive agents, and targeted immunotherapy have been significant events. However, extracting the most critical information from complex events is very difficult to guide clinical work. Therefore, we used bibliometrics to summarize and look forward.

METHODS

Science Citation Index Expanded (SCI-E) from the Web of Science Core Collection (WoSCC) database was identified as a source of material for obtaining MG-related articles. Scimago Graphica, CiteSpace, VOSviewer, and bibliometrix were utilized for bibliometric analysis. Knowledge network graphs were constructed and visualized; countries, institutions, authors, journals, references, and keywords were evaluated. In addition, GraphPad Prism and Microsoft Excel 365 were applied for statistical analysis.

RESULTS

As of October 25, 2022, 9,970 original MG-related articles were used for the bibliometric analysis; the cumulative number of citations to these articles was 236,987, with an H-index of 201. The United States ranked first in terms of the number of publications (2,877) and H-index (134). Oxford has the highest H-index (67), and Udice French Research University has the highest number of publications (319). The author with the highest average number of citations (66.19), publications (151), and H-index (53) was Vincent A. 28 articles have remained in an explosive period of citations. The final screening yielded predictive keywords related to clinical trials and COVID-19.

CONCLUSION

We conducted a bibliometric analysis of 9,970 original MG-related articles published between 1966 and 2022. Ultimately, we found that future MG research hotspots include two major parts: (1) studies directly related to MG disease itself: clinical trials of various targeted biological agents; the relationship between biomarkers and therapeutic decisions, pathogenesis and outcome events, ultimately serving individualized management or precision therapy; (2) studies related to MG and COVID-19: different variants of COVID-19 (e.g., Omicron) on MG adverse outcome events; assessment of the safety of different COVID-19 vaccines for different subtypes of MG.

摘要

背景

重症肌无力(MG)是一种获得性神经肌肉接头传递障碍的自身免疫性疾病。在过去的二十年中,各种发病机制、免疫抑制剂的应用和靶向免疫疗法都是重大事件。然而,从复杂事件中提取最关键的信息非常困难,难以指导临床工作。因此,我们使用文献计量学进行总结和展望。

方法

从 Web of Science Core Collection(WoSCC)数据库的 Science Citation Index Expanded(SCI-E)中确定了作为获取 MG 相关文章的材料来源。使用 Scimago Graphica、CiteSpace、VOSviewer 和 bibliometrix 进行文献计量分析。构建和可视化知识网络图;评估国家、机构、作者、期刊、参考文献和关键词。此外,还使用 GraphPad Prism 和 Microsoft Excel 365 进行统计分析。

结果

截至 2022 年 10 月 25 日,共使用了 9970 篇原始 MG 相关文章进行文献计量分析;这些文章的总引文数为 236987 次,H 指数为 201。美国在发表的文章数量(2877 篇)和 H 指数(134 篇)方面排名第一。牛津大学的 H 指数(67)最高,乌迪塞法国研究大学发表的文章最多(319 篇)。作者平均引用次数(66.19)、发表文章(151 篇)和 H 指数(53 篇)最高的是 Vincent A。有 28 篇文章处于引文爆炸期。最终筛选出与临床试验和 COVID-19 相关的预测关键词。

结论

我们对 1966 年至 2022 年间发表的 9970 篇原始 MG 相关文章进行了文献计量分析。最终,我们发现未来 MG 研究的热点包括两个主要部分:(1)与 MG 疾病本身直接相关的研究:各种靶向生物制剂的临床试验;生物标志物与治疗决策、发病机制和结果事件之间的关系,最终为个体化管理或精准治疗提供依据;(2)与 MG 和 COVID-19 相关的研究:不同变异株的 COVID-19(如奥密克戎)对 MG 不良结局事件的影响;评估不同 COVID-19 疫苗对不同类型 MG 的安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6631/10019893/aaa141651cc4/fimmu-14-1132201-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验