Suppr超能文献

一项基于聊天机器人的干预措施,结合情绪调节学习模块(ELME),以改善处于压力状态样本中的压力及与健康相关参数:一项随机对照试验的研究方案。

A chatbot-based intervention with ELME to improve stress and health-related parameters in a stressed sample: Study protocol of a randomised controlled trial.

作者信息

Schillings C, Meissner D, Erb B, Schultchen D, Bendig E, Pollatos O

机构信息

Department of Clinical and Health Psychology, Ulm University, Ulm, Germany.

Institute of Distributed Systems, Ulm University, Ulm, Germany.

出版信息

Front Digit Health. 2023 Mar 1;5:1046202. doi: 10.3389/fdgth.2023.1046202. eCollection 2023.

Abstract

BACKGROUND

Stress levels in the general population had already been increasing in recent years, and have subsequently been exacerbated by the global pandemic. One approach for innovative online-based interventions are "chatbots" - computer programs that can simulate a text-based interaction with human users a conversational interface. Research on the efficacy of chatbot-based interventions in the context of mental health is sparse. The present study is designed to investigate the effects of a three-week chatbot-based intervention with the chatbot ELME, aiming to reduce stress and to improve various health-related parameters in a stressed sample.

METHODS

In this multicenter, two-armed randomised controlled trial with a parallel design, a three-week chatbot-based intervention group including two daily interactive intervention sessions smartphone (á 10-20 min.) is compared to a treatment-as-usual control group. A total of 130 adult participants with a medium to high stress levels will be recruited in Germany. Assessments will take place pre-intervention, post-intervention (after three weeks), and follow-up (after six weeks). The primary outcome is perceived stress. Secondary outcomes include self-reported interoceptive accuracy, mindfulness, anxiety, depression, personality, emotion regulation, psychological well-being, stress mindset, intervention credibility and expectancies, affinity for technology, and attitudes towards artificial intelligence. During the intervention, participants undergo ecological momentary assessments. Furthermore, satisfaction with the intervention, the usability of the chatbot, potential negative effects of the intervention, adherence, potential dropout reasons, and open feedback questions regarding the chatbot are assessed post-intervention.

DISCUSSION

To the best of our knowledge, this is the first chatbot-based intervention addressing interoception, as well as in the context with the target variables stress and mindfulness. The design of the present study and the usability of the chatbot were successfully tested in a previous feasibility study. To counteract a low adherence of the chatbot-based intervention, a high guidance by the chatbot, short sessions, individual and flexible time points of the intervention units and the ecological momentary assessments, reminder messages, and the opportunity to postpone single units were implemented.

TRIAL REGISTRATION

The trial is registered at the WHO International Clinical Trials Registry Platform the German Clinical Trials Register (DRKS00027560; date of registration: 06 January 2022). This is protocol version No. 1. In case of important protocol modifications, trial registration will be updated.

摘要

背景

近年来,普通人群的压力水平一直在上升,随后又因全球大流行而加剧。一种基于在线创新的干预方法是“聊天机器人”——一种可以模拟与人类用户进行基于文本交互的计算机程序,即对话界面。关于基于聊天机器人的干预措施在心理健康方面的疗效研究很少。本研究旨在调查基于聊天机器人ELME的为期三周的干预措施的效果,旨在减轻压力并改善压力样本中各种与健康相关的参数。

方法

在这项多中心、双臂平行设计的随机对照试验中,将一个为期三周的基于聊天机器人的干预组(包括每天两次智能手机互动干预课程,每次10 - 20分钟)与一个常规治疗对照组进行比较。在德国总共将招募130名中度至高度压力水平的成年参与者。评估将在干预前、干预后(三周后)和随访(六周后)进行。主要结果是感知压力。次要结果包括自我报告的内感受准确性、正念、焦虑、抑郁、人格、情绪调节、心理健康、压力心态、干预可信度和期望、对技术的亲和力以及对人工智能的态度。在干预期间,参与者进行生态瞬时评估。此外,在干预后评估对干预的满意度、聊天机器人的可用性、干预的潜在负面影响、依从性、潜在的退出原因以及关于聊天机器人的开放性反馈问题。

讨论

据我们所知,这是第一个基于聊天机器人的针对内感受以及压力和正念等目标变量的干预措施。本研究的设计和聊天机器人的可用性在先前的可行性研究中已成功测试。为了应对基于聊天机器人的干预措施的低依从性,实施了聊天机器人的高指导、短课程、干预单元的个性化和灵活时间点以及生态瞬时评估、提醒消息以及推迟单个单元的机会。

试验注册

该试验已在世界卫生组织国际临床试验注册平台和德国临床试验注册处注册(DRKS00027560;注册日期:2022年1月6日)。这是方案版本1。如有重要的方案修改,试验注册将更新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99c7/10014895/9a30d4500bf6/fdgth-05-1046202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验