Suppr超能文献

基于代谢综合征及其组成部分,对机器学习模型和Cox比例风险模型预测胃肠道癌症风险的能力进行比较。

A comparison of machine learning models and Cox proportional hazards models regarding their ability to predict the risk of gastrointestinal cancer based on metabolic syndrome and its components.

作者信息

Tran Tao Thi, Lee Jeonghee, Gunathilake Madhawa, Kim Junetae, Kim Sun-Young, Cho Hyunsoon, Kim Jeongseon

机构信息

Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Republic of Korea.

Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Republic of Korea.

出版信息

Front Oncol. 2023 Mar 2;13:1049787. doi: 10.3389/fonc.2023.1049787. eCollection 2023.

Abstract

BACKGROUND

Little is known about applying machine learning (ML) techniques to identify the important variables contributing to the occurrence of gastrointestinal (GI) cancer in epidemiological studies. We aimed to compare different ML models to a Cox proportional hazards (CPH) model regarding their ability to predict the risk of GI cancer based on metabolic syndrome (MetS) and its components.

METHODS

A total of 41,837 participants were included in a prospective cohort study. Incident cancer cases were identified by following up with participants until December 2019. We used CPH, random survival forest (RSF), survival trees (ST), gradient boosting (GB), survival support vector machine (SSVM), and extra survival trees (EST) models to explore the impact of MetS on GI cancer prediction. We used the C-index and integrated Brier score (IBS) to compare the models.

RESULTS

In all, 540 incident GI cancer cases were identified. The GB and SSVM models exhibited comparable performance to the CPH model concerning the C-index (0.725). We also recorded a similar IBS for all models (0.017). Fasting glucose and waist circumference were considered important predictors.

CONCLUSIONS

Our study found comparably good performance concerning the C-index for the ML models and CPH model. This finding suggests that ML models may be considered another method for survival analysis when the CPH model's conditions are not satisfied.

摘要

背景

在流行病学研究中,关于应用机器学习(ML)技术来识别导致胃肠道(GI)癌发生的重要变量,人们了解甚少。我们旨在比较不同的ML模型与Cox比例风险(CPH)模型在基于代谢综合征(MetS)及其组成部分预测GI癌风险方面的能力。

方法

一项前瞻性队列研究共纳入41,837名参与者。通过对参与者进行随访直至2019年12月来确定新发癌症病例。我们使用CPH、随机生存森林(RSF)、生存树(ST)、梯度提升(GB)、生存支持向量机(SSVM)和额外生存树(EST)模型来探讨MetS对GI癌预测的影响。我们使用C指数和综合Brier评分(IBS)来比较这些模型。

结果

总共确定了540例新发GI癌病例。GB和SSVM模型在C指数方面表现出与CPH模型相当的性能(0.725)。我们还记录到所有模型的IBS相似(0.017)。空腹血糖和腰围被认为是重要的预测因素。

结论

我们的研究发现ML模型和CPH模型在C指数方面表现相当出色。这一发现表明,当CPH模型的条件不满足时,ML模型可被视为生存分析的另一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0de3/10018751/bdb38b15a8d2/fonc-13-1049787-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验