Suppr超能文献

关于微生物酶作为新兴微塑料污染解决方案的生物修复潜力的综述

A minireview on the bioremediative potential of microbial enzymes as solution to emerging microplastic pollution.

作者信息

De Jesus Rener, Alkendi Ruwaya

机构信息

College of Graduate Studies, United Arab Emirates University, Al Ain, United Arab Emirates.

Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.

出版信息

Front Microbiol. 2023 Mar 2;13:1066133. doi: 10.3389/fmicb.2022.1066133. eCollection 2022.

Abstract

Accumulating plastics in the biosphere implicates adverse effects, raising serious concern among scientists worldwide. Plastic waste in nature disintegrates into microplastics. Because of their minute appearance, at a scale of <5 mm, microplastics easily penetrate different pristine water bodies and terrestrial niches, posing detrimental effects on flora and fauna. The potential bioremediative application of microbial enzymes is a sustainable solution for the degradation of microplastics. Studies have reported a plethora of bacterial and fungal species that can degrade synthetic plastics by excreting plastic-degrading enzymes. Identified microbial enzymes, such as PETase and MHETase from 201-F6 and cutinase (Tfc), are able to depolymerize plastic polymer chains producing ecologically harmless molecules like carbon dioxide and water. However, thermal stability and pH sensitivity are among the biochemical limitations of the plastic-degrading enzymes that affect their overall catalytic activities. The application of biotechnological approaches improves enzyme action and production. Protein-based engineering yields enzyme variants with higher enzymatic activity and temperature-stable properties, while site-directed mutagenesis using the model system expresses mutant thermostable enzymes. Furthermore, microalgal chassis is a promising model system for "green" microplastic biodegradation. Hence, the bioremediative properties of microbial enzymes are genuinely encouraging for the biodegradation of synthetic microplastic polymers.

摘要

生物圈中不断累积的塑料会带来不利影响,引发了全球科学家的严重关切。自然界中的塑料垃圾会分解成微塑料。由于微塑料外观微小,尺寸小于5毫米,它们很容易渗透到不同的原始水体和陆地生态位,对动植物造成有害影响。微生物酶在生物修复方面的潜在应用是降解微塑料的可持续解决方案。研究报告了大量能够通过分泌塑料降解酶来降解合成塑料的细菌和真菌物种。已鉴定出的微生物酶,如来自201-F6的PETase和MHETase以及角质酶(Tfc),能够使塑料聚合物链解聚,产生二氧化碳和水等对生态无害的分子。然而,热稳定性和pH敏感性是影响塑料降解酶整体催化活性的生化限制因素。生物技术方法的应用可改善酶的作用和产量。基于蛋白质的工程技术可产生具有更高酶活性和温度稳定特性的酶变体,而使用模型系统进行的定点诱变可表达突变的耐热酶。此外,微藻底盘是用于“绿色”微塑料生物降解的有前景的模型系统。因此,微生物酶的生物修复特性对于合成微塑料聚合物的生物降解确实具有鼓舞作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ba7/10018190/2bc808ca2773/fmicb-13-1066133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验