Suppr超能文献

来自PA23的聚合物降解脂肪酶LIP1和LIP2的特性分析

Characterization of Polymer Degrading Lipases, LIP1 and LIP2 From PA23.

作者信息

Mohanan Nisha, Wong Chun Hin, Budisa Nediljko, Levin David B

机构信息

Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada.

Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada.

出版信息

Front Bioeng Biotechnol. 2022 Apr 20;10:854298. doi: 10.3389/fbioe.2022.854298. eCollection 2022.

Abstract

The outstanding metabolic and bioprotective properties of the bacterial genus make these species a potentially interesting source for the search of hydrolytic activities that could be useful for the degradation of plastics. We identified two genes encoding the intracellular lipases LIP1 and LIP2 of the biocontrol bacterium PA23 and subsequently performed cloning and expression in . The gene has an open reading frame of 828 bp and encodes a protein of 29.7 kDa whereas the consists of 834 bp and has a protein of 30.2 kDa. Although secondary structure analyses of LIP1 and LIP2 indicate a dominant α/β-hydrolase-fold, the two proteins differ widely in their amino acid sequences (15.39% identity), substrate specificities, and hydrolysis rates. Homology modeling indicates the catalytic serine in both enzymes located in a GXSXG sequence motif (lipase box). However, LIP1 has a catalytic triad of Ser152-His253-Glu221 with a GGX-type oxyanion pocket, whereas LIP2 has Ser138-His249-Asp221 in its active site and a GX-type of oxyanion hole residues. However, LIP1 has a catalytic triad of Ser152-His253-Glu221 with an oxyanion pocket of GGX-type, whereas LIP2 has Ser138-His249-Asp221 in its active site and a GX-type of oxyanion hole residues. Our three-dimensional models of LIP1 and LIP2 complexed with a 3-hydroxyoctanoate dimer revealed the core α/β hydrolase-type domain with an exposed substrate binding pocket in LIP1 and an active-site capped with a closing lid domain in LIP2. The recombinant LIP1 was optimally active at 45°C and pH 9.0, and the activity improved in the presence of Ca. LIP2 exhibited maximum activity at 40°C and pH 8.0, and was unaffected by Ca. Despite different properties, the enzymes exhibited broadsubstrate specificity and were able to hydrolyze short chain length and medium chain length polyhydroxyalkanoates (PHAs), polylactic acid (PLA), and para-nitrophenyl (pNP) alkanoates. Gel Permeation Chromatography (GPC) analysis showed a decrease in the molecular weight of the polymers after incubation with LIP1 and LIP2. The enzymes also manifested some polymer-degrading activity on petroleum-based polymers such as poly(ε-caprolactone) (PCL) and polyethylene succinate (PES), suggesting that these enzymes could be useful for biodegradation of synthetic polyester plastics. The study will be the first report of the complete characterization of intracellular lipases from bacterial and/or species. The lipases, LIP1 and LIP2 are different from other bacterial lipases/esterases in having broad substrate specificity for polyesters.

摘要

该细菌属出色的代谢和生物保护特性,使其成为寻找可能有助于塑料降解的水解活性的潜在有趣来源。我们鉴定了生物防治细菌PA23的两个编码细胞内脂肪酶LIP1和LIP2的基因,随后在大肠杆菌中进行了克隆和表达。LIP1基因有一个828 bp的开放阅读框,编码一个29.7 kDa的蛋白质,而LIP2由834 bp组成,有一个30.2 kDa的蛋白质。尽管对LIP1和LIP2的二级结构分析表明其具有占主导地位的α/β水解酶折叠结构,但这两种蛋白质在氨基酸序列(15.39%的同一性)、底物特异性和水解速率方面差异很大。同源性建模表明,两种酶中的催化丝氨酸位于GXSXG序列基序(脂肪酶盒)中。然而,LIP1具有Ser152-His253-Glu221的催化三联体,带有一个GGX型氧阴离子口袋,而LIP2在其活性位点具有Ser138-His249-Asp221以及一个GX型氧阴离子孔残基。然而,LIP1具有Ser152-His253-Glu221的催化三联体,带有一个GGX型的氧阴离子口袋,而LIP2在其活性位点具有Ser138-His249-Asp221以及一个GX型的氧阴离子孔残基。我们将LIP1和LIP2与3-羟基辛酸二聚体复合的三维模型显示,LIP1中核心α/β水解酶型结构域有一个暴露的底物结合口袋,而LIP2的活性位点被一个封闭的盖子结构域覆盖。重组LIP1在45°C和pH 9.0时活性最佳,在Ca存在下活性提高。LIP2在40°C和pH 8.0时表现出最大活性,且不受Ca的影响。尽管性质不同,但这两种酶表现出广泛的底物特异性,能够水解短链长度和中链长度的聚羟基脂肪酸酯(PHA)、聚乳酸(PLA)和对硝基苯基(pNP)链烷酸酯。凝胶渗透色谱(GPC)分析表明,聚合物与LIP1和LIP2孵育后分子量降低。这些酶对聚(ε-己内酯)(PCL)和聚丁二酸乙二酯(PES)等石油基聚合物也表现出一定的聚合物降解活性,表明这些酶可用于合成聚酯塑料的生物降解。该研究将是关于细菌和/或假单胞菌属细胞内脂肪酶完整表征的首次报道。脂肪酶LIP1和LIP2与其他细菌脂肪酶/酯酶的不同之处在于对聚酯具有广泛的底物特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a88/9065602/7814694bd45b/fbioe-10-854298-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验