文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人原代细胞和癌细胞纳米毒性的比较研究

Comparative Study on Nanotoxicity in Human Primary and Cancer Cells.

作者信息

Kim In Young, Kwak Minjeong, Kim Jaeseok, Lee Tae Geol, Heo Min Beom

机构信息

Nano-Safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Yuseong-gu, Daejeon 34113, Korea.

出版信息

Nanomaterials (Basel). 2022 Mar 17;12(6):993. doi: 10.3390/nano12060993.


DOI:10.3390/nano12060993
PMID:35335806
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8955245/
Abstract

Nanomaterial toxicity tests using normal and cancer cells may yield markedly different results. Here, nanomaterial toxicity between cancer and primary human cells was compared to determine the basic cell line selection criteria for nanomaterial toxicity analyses. Specifically, we exposed two cancer (A549 and HepG2) and two normal cell lines (NHBE and HH) cell lines to SiO nanoparticles (NPs) and evaluated the cytotoxicity (MTS assay), cell death mode, and intracellular NP retention. MTS assay results revealed higher sensitivity of HH cells to SiO NPs than HepG2 cells, while no difference was observed between NHBE and A549 cells. In addition, SiO NPs primarily induced necrosis in all the cell lines. Moreover, we evaluated NP accumulation by treating the cell lines with fluorescein-isothiocyanate-labeled SiO NPs. After 48 h of treatment, less than 10% of A549 and HepG2 cells and more than 30% of NHBE and HH cells contained the labeled NPs. Collectively, our results suggest that cell viability, death mode, and intracellular compound accumulation could be assessed using cancer cells. However, the outcomes of certain investigations, such as intracellular NP retention, may differ between cancer and normal cells.

摘要

使用正常细胞和癌细胞进行的纳米材料毒性测试可能会产生明显不同的结果。在此,比较了癌细胞和原代人类细胞之间的纳米材料毒性,以确定纳米材料毒性分析的基本细胞系选择标准。具体而言,我们将两种癌细胞系(A549和HepG2)和两种正常细胞系(NHBE和HH)暴露于二氧化硅纳米颗粒(NPs),并评估细胞毒性(MTS测定)、细胞死亡模式和细胞内纳米颗粒滞留情况。MTS测定结果显示,HH细胞对二氧化硅纳米颗粒的敏感性高于HepG2细胞,而NHBE和A549细胞之间未观察到差异。此外,二氧化硅纳米颗粒主要在所有细胞系中诱导坏死。此外,我们通过用异硫氰酸荧光素标记的二氧化硅纳米颗粒处理细胞系来评估纳米颗粒的积累。处理48小时后,不到10%的A549和HepG2细胞以及超过30%的NHBE和HH细胞含有标记的纳米颗粒。总体而言,我们的结果表明,可以使用癌细胞评估细胞活力、死亡模式和细胞内化合物积累情况。然而,某些研究的结果,如细胞内纳米颗粒滞留情况,在癌细胞和正常细胞之间可能会有所不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/3e958d0b50c8/nanomaterials-12-00993-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/4c6321247578/nanomaterials-12-00993-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/779af2ccfede/nanomaterials-12-00993-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/4a15d2f4e566/nanomaterials-12-00993-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/f6f837fe764d/nanomaterials-12-00993-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/3e958d0b50c8/nanomaterials-12-00993-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/4c6321247578/nanomaterials-12-00993-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/779af2ccfede/nanomaterials-12-00993-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/4a15d2f4e566/nanomaterials-12-00993-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/f6f837fe764d/nanomaterials-12-00993-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/8955245/3e958d0b50c8/nanomaterials-12-00993-g005.jpg

相似文献

[1]
Comparative Study on Nanotoxicity in Human Primary and Cancer Cells.

Nanomaterials (Basel). 2022-3-17

[2]
Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation.

Part Fibre Toxicol. 2018-7-3

[3]
Global Proteomics to Study Silica Nanoparticle-Induced Cytotoxicity and Its Mechanisms in HepG2 Cells.

Biomolecules. 2021-3-2

[4]
Amorphous silica nanoparticles alter microtubule dynamics and cell migration.

Nanotoxicology. 2014-10-17

[5]
Cytotoxicity of NiO and Ni(OH) Nanoparticles Is Mediated by Oxidative Stress-Induced Cell Death and Suppression of Cell Proliferation.

Int J Mol Sci. 2020-3-28

[6]
The effect of SiO/Au core-shell nanoparticles on breast cancer cell's radiotherapy.

Artif Cells Nanomed Biotechnol. 2018-5-9

[7]
Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines.

Chem Biol Interact. 2013-4-25

[8]
Amphipathic silica nanoparticles induce cytotoxicity through oxidative stress mediated and p53 dependent apoptosis pathway in human liver cell line HL-7702 and rat liver cell line BRL-3A.

Colloids Surf B Biointerfaces. 2016-9-1

[9]
Predictive Metabolomic Signatures for Safety Assessment of Metal Oxide Nanoparticles.

ACS Nano. 2019-11-11

[10]
Predictive toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data.

Part Fibre Toxicol. 2013-7-29

引用本文的文献

[1]
Therapeutic Potential of Glucose Oxidase-Loaded Biogenic Mesoporous Silica Nanoparticles in Ovarian Cancer.

Pharmaceuticals (Basel). 2025-7-18

[2]
Oxidative impact on lipoprotein structure: Insights from dynamic light scattering.

Biochem Biophys Rep. 2025-2-10

[3]
Recent developments in cancer diagnosis and treatment using nanotechnology.

Ann Med Surg (Lond). 2024-6-17

[4]
Nanoparticles and Airway Epithelial Cells: Exploring the Impacts and Methodologies in Toxicity Assessment.

Int J Mol Sci. 2024-7-18

[5]
Nanotechnology in Cancer Diagnosis and Treatment.

Pharmaceutics. 2023-3-22

[6]
Data-Driven Quantitative Intrinsic Hazard Criteria for Nanoproduct Development in a Safe-by-Design Paradigm: A Case Study of Silver Nanoforms.

ACS Appl Nano Mater. 2023-2-16

本文引用的文献

[1]
Titanium Dioxide Induces Apoptosis under UVA Irradiation via the Generation of Lysosomal Membrane Permeabilization-Dependent Reactive Oxygen Species in HaCat Cells.

Nanomaterials (Basel). 2021-7-28

[2]
Relevance of Nanomaterials in Food Packaging and its Advanced Future Prospects.

J Inorg Organomet Polym Mater. 2020

[3]
Nanomaterials in Cosmetics: Recent Updates.

Nanomaterials (Basel). 2020-5-20

[4]
Research tools for extrapolating the disposition and pharmacokinetics of nanomaterials from preclinical animals to humans.

Theranostics. 2019-5-18

[5]
Potential adverse effects of nanoparticles on the reproductive system.

Int J Nanomedicine. 2018-12-11

[6]
Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis.

IET Nanobiotechnol. 2018-6

[7]
Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties.

Nanoscale Res Lett. 2018-2-7

[8]
Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect.

Carcinogenesis. 2017-2-1

[9]
Cellular elimination of nanoparticles.

Environ Toxicol Pharmacol. 2016-7-11

[10]
Nanomaterials in the Pharmaceuticals: Occurrence, Behaviour and Applications.

Curr Pharm Des. 2016

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索