Punnakkal Abhinanda Ranjit, Godtliebsen Gustav, Somani Ayush, Andres Acuna Maldonado Sebastian, Birna Birgisdottir Åsa, Prasad Dilip K, Horsch Alexander, Agarwal Krishna
Department of Computer Science, UiT The Arctic University of Norway.
Department of Clinical Medicine, UiT The Arctic University of Norway.
J Vis Exp. 2023 Mar 3(193). doi: 10.3791/64880.
The quantitative analysis of subcellular organelles such as mitochondria in cell fluorescence microscopy images is a demanding task because of the inherent challenges in the segmentation of these small and morphologically diverse structures. In this article, we demonstrate the use of a machine learning-aided segmentation and analysis pipeline for the quantification of mitochondrial morphology in fluorescence microscopy images of fixed cells. The deep learning-based segmentation tool is trained on simulated images and eliminates the requirement for ground truth annotations for supervised deep learning. We demonstrate the utility of this tool on fluorescence microscopy images of fixed cardiomyoblasts with a stable expression of fluorescent mitochondria markers and employ specific cell culture conditions to induce changes in the mitochondrial morphology.
在细胞荧光显微镜图像中对线粒体等亚细胞器进行定量分析是一项艰巨的任务,因为这些小且形态多样的结构在分割方面存在固有挑战。在本文中,我们展示了一种机器学习辅助的分割和分析流程,用于定量分析固定细胞荧光显微镜图像中的线粒体形态。基于深度学习的分割工具在模拟图像上进行训练,消除了监督深度学习对真实标注的需求。我们在稳定表达荧光线粒体标记的固定心肌成纤维细胞的荧光显微镜图像上展示了该工具的实用性,并采用特定的细胞培养条件来诱导线粒体形态的变化。