Suppr超能文献

通过模拟监督学习分析线粒体形态

Analyzing Mitochondrial Morphology Through Simulation Supervised Learning.

作者信息

Punnakkal Abhinanda Ranjit, Godtliebsen Gustav, Somani Ayush, Andres Acuna Maldonado Sebastian, Birna Birgisdottir Åsa, Prasad Dilip K, Horsch Alexander, Agarwal Krishna

机构信息

Department of Computer Science, UiT The Arctic University of Norway.

Department of Clinical Medicine, UiT The Arctic University of Norway.

出版信息

J Vis Exp. 2023 Mar 3(193). doi: 10.3791/64880.

Abstract

The quantitative analysis of subcellular organelles such as mitochondria in cell fluorescence microscopy images is a demanding task because of the inherent challenges in the segmentation of these small and morphologically diverse structures. In this article, we demonstrate the use of a machine learning-aided segmentation and analysis pipeline for the quantification of mitochondrial morphology in fluorescence microscopy images of fixed cells. The deep learning-based segmentation tool is trained on simulated images and eliminates the requirement for ground truth annotations for supervised deep learning. We demonstrate the utility of this tool on fluorescence microscopy images of fixed cardiomyoblasts with a stable expression of fluorescent mitochondria markers and employ specific cell culture conditions to induce changes in the mitochondrial morphology.

摘要

在细胞荧光显微镜图像中对线粒体等亚细胞器进行定量分析是一项艰巨的任务,因为这些小且形态多样的结构在分割方面存在固有挑战。在本文中,我们展示了一种机器学习辅助的分割和分析流程,用于定量分析固定细胞荧光显微镜图像中的线粒体形态。基于深度学习的分割工具在模拟图像上进行训练,消除了监督深度学习对真实标注的需求。我们在稳定表达荧光线粒体标记的固定心肌成纤维细胞的荧光显微镜图像上展示了该工具的实用性,并采用特定的细胞培养条件来诱导线粒体形态的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验