Suppr超能文献

深度强化学习及其与大脑神经科学的联系

Advanced Reinforcement Learning and Its Connections with Brain Neuroscience.

作者信息

Fan Chaoqiong, Yao Li, Zhang Jiacai, Zhen Zonglei, Wu Xia

机构信息

School of Artificial Intelligence, Beijing Normal University, Beijing, China.

Faculty of Psychology, Beijing Normal University, Beijing, China.

出版信息

Research (Wash D C). 2023;6:0064. doi: 10.34133/research.0064. Epub 2023 Mar 15.

Abstract

In recent years, brain science and neuroscience have greatly propelled the innovation of computer science. In particular, knowledge from the neurobiology and neuropsychology of the brain revolutionized the development of reinforcement learning (RL) by providing novel interpretable mechanisms of how the brain achieves intelligent and efficient decision making. Triggered by this, there has been a boom in research about advanced RL algorithms that are built upon the inspirations of brain neuroscience. In this work, to further strengthen the bidirectional link between the 2 communities and especially promote the research on modern RL technology, we provide a comprehensive survey of recent advances in the area of brain-inspired/related RL algorithms. We start with basis theories of RL, and present a concise introduction to brain neuroscience related to RL. Then, we classify these advanced RL methodologies into 3 categories according to different connections of the brain, i.e., micro-neural activity, macro-brain structure, and cognitive function. Each category is further surveyed by presenting several modern RL algorithms along with their mathematical models, correlations with the brain, and open issues. Finally, we introduce several important applications of RL algorithms, followed by the discussions of challenges and opportunities for future research.

摘要

近年来,脑科学和神经科学极大地推动了计算机科学的创新。特别是,来自大脑神经生物学和神经心理学的知识通过提供大脑实现智能高效决策的新颖可解释机制,彻底改变了强化学习(RL)的发展。受此启发,基于大脑神经科学灵感的先进强化学习算法研究蓬勃发展。在这项工作中,为了进一步加强这两个领域之间的双向联系,特别是促进现代强化学习技术的研究,我们对受大脑启发/相关的强化学习算法领域的最新进展进行了全面综述。我们从强化学习的基础理论开始,简要介绍与强化学习相关的大脑神经科学。然后,我们根据大脑的不同联系,即微观神经活动、宏观大脑结构和认知功能,将这些先进的强化学习方法分为三类。通过介绍几种现代强化学习算法及其数学模型、与大脑的相关性和开放问题,对每一类进行了进一步的综述。最后,我们介绍了强化学习算法的几个重要应用,随后讨论了未来研究的挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9165/10017102/eb431e9da76a/research.0064.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验