Suppr超能文献

基于层次分割的骨架化方法对油菜角果形态进行表型分析

Phenotyping of Silique Morphology in Oilseed Rape Using Skeletonization with Hierarchical Segmentation.

作者信息

Ma Zhihong, Du Ruiming, Xie Jiayang, Sun Dawei, Fang Hui, Jiang Lixi, Cen Haiyan

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China.

Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, P.R. China.

出版信息

Plant Phenomics. 2023;5:0027. doi: 10.34133/plantphenomics.0027. Epub 2023 Mar 15.

Abstract

Silique morphology is an important trait that determines the yield output of oilseed rape (.). Segmenting siliques and quantifying traits are challenging because of the complicated structure of an oilseed rape plant at the reproductive stage. This study aims to develop an accurate method in which a skeletonization algorithm was combined with the hierarchical segmentation (SHS) algorithm to separate siliques from the whole plant using 3-dimensional (3D) point clouds. We combined the L1-median skeleton with the random sample consensus for iteratively extracting skeleton points and optimized the skeleton based on information such as distance, angle, and direction from neighborhood points. Density-based spatial clustering of applications with noise and weighted unidirectional graph were used to achieve hierarchical segmentation of siliques. Using the SHS, we quantified the silique number (SN), silique length (SL), and silique volume (SV) automatically based on the geometric rules. The proposed method was tested with the oilseed rape plants at the mature stage grown in a greenhouse and field. We found that our method showed good performance in silique segmentation and phenotypic extraction with values of 0.922 and 0.934 for SN and total SL, respectively. Additionally, SN, total SL, and total SV had the statistical significance of correlations with the yield of a plant, with values of 0.935, 0.916, and 0.897, respectively. Overall, the SHS algorithm is accurate, efficient, and robust for the segmentation of siliques and extraction of silique morphological parameters, which is promising for high-throughput silique phenotyping in oilseed rape breeding.

摘要

角果形态是决定油菜籽产量的一个重要性状。由于油菜在生殖阶段植株结构复杂,对其角果进行分割和性状量化具有挑战性。本研究旨在开发一种精确的方法,将骨架化算法与分层分割(SHS)算法相结合,利用三维(3D)点云从整株植物中分离角果。我们将L1中位数骨架与随机抽样一致性相结合,迭代提取骨架点,并根据邻域点的距离、角度和方向等信息对骨架进行优化。使用基于密度的噪声应用空间聚类和加权单向图来实现角果的分层分割。利用SHS,我们根据几何规则自动对角果数量(SN)、角果长度(SL)和角果体积(SV)进行了量化。所提出的方法在温室和田间种植的成熟阶段油菜植株上进行了测试。我们发现我们的方法在角果分割和表型提取方面表现良好,SN和总SL的F值分别为0.922和0.934。此外,SN、总SL和总SV与单株产量具有显著的相关性,F值分别为0.935、0.916和0.897。总体而言,SHS算法在角果分割和角果形态参数提取方面准确、高效且稳健,有望用于油菜育种中的高通量角果表型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdb4/10017417/bcb7e7e1c441/plantphenomics.0027.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验