Suppr超能文献

基于稀疏-密集点云映射的油菜角果点云分割

Point clouds segmentation of rapeseed siliques based on sparse-dense point clouds mapping.

作者信息

Qiao Yuhui, Liao Qingxi, Zhang Moran, Han Binbin, Peng Chengli, Huang Zhenhao, Wang Shaodong, Zhou Guangsheng, Xu Shengyong

机构信息

College of Engineering, Huazhong Agricultural University, Wuhan, China.

Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.

出版信息

Front Plant Sci. 2023 Jul 14;14:1188286. doi: 10.3389/fpls.2023.1188286. eCollection 2023.

Abstract

In this study, we propose a high-throughput and low-cost automatic detection method based on deep learning to replace the inefficient manual counting of rapeseed siliques. First, a video is captured with a smartphone around the rapeseed plants in the silique stage. Feature point detection and matching based on SIFT operators are applied to the extracted video frames, and sparse point clouds are recovered using epipolar geometry and triangulation principles. The depth map is obtained by calculating the disparity of the matched images, and the dense point cloud is fused. The plant model of the whole rapeseed plant in the silique stage is reconstructed based on the structure-from-motion (SfM) algorithm, and the background is removed by using the passthrough filter. The downsampled 3D point cloud data is processed by the DGCNN network, and the point cloud is divided into two categories: sparse rapeseed canopy siliques and rapeseed stems. The sparse canopy siliques are then segmented from the original whole rapeseed siliques point cloud using the sparse-dense point cloud mapping method, which can effectively save running time and improve efficiency. Finally, Euclidean clustering segmentation is performed on the rapeseed canopy siliques, and the RANSAC algorithm is used to perform line segmentation on the connected siliques after clustering, obtaining the three-dimensional spatial position of each silique and counting the number of siliques. The proposed method was applied to identify 1457 siliques from 12 rapeseed plants, and the experimental results showed a recognition accuracy greater than 97.80%. The proposed method achieved good results in rapeseed silique recognition and provided a useful example for the application of deep learning networks in dense 3D point cloud segmentation.

摘要

在本研究中,我们提出了一种基于深度学习的高通量低成本自动检测方法,以取代效率低下的油菜角果人工计数。首先,在角果期用智能手机围绕油菜植株拍摄视频。将基于尺度不变特征变换(SIFT)算子的特征点检测与匹配应用于提取的视频帧,并利用对极几何和三角测量原理恢复稀疏点云。通过计算匹配图像的视差获得深度图,并融合密集点云。基于运动恢复结构(SfM)算法重建角果期整个油菜植株的植物模型,并使用直通滤波器去除背景。对下采样后的三维点云数据进行深度图卷积神经网络(DGCNN)网络处理,将点云分为两类:稀疏的油菜冠层角果和油菜茎。然后使用稀疏-密集点云映射方法从原始的整个油菜角果点云中分割出稀疏冠层角果,这可以有效节省运行时间并提高效率。最后,对油菜冠层角果进行欧式聚类分割,并使用随机抽样一致性(RANSAC)算法对聚类后的相连角果进行线段分割,得到每个角果的三维空间位置并对角果数量进行计数。所提出的方法应用于识别12株油菜植株上的1457个角果,实验结果表明识别准确率大于97.80%。该方法在油菜角果识别方面取得了良好的效果,为深度学习网络在密集三维点云分割中的应用提供了一个有用的实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e28f/10375295/1eab5412d6c9/fpls-14-1188286-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验