Johns Hopkins University School of Medicine, Baltimore, and Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland (J.B.S., R.V.).
Leiden University Medical Center, Leiden, the Netherlands (R.H.H.G.).
Ann Intern Med. 2023 Apr;176(4):536-544. doi: 10.7326/M22-1510. Epub 2023 Mar 21.
Increasing availability of real-world data (RWD) generated from patient care enables the generation of evidence to inform clinical decisions for subpopulations of patients and perhaps even individuals. There is growing opportunity to identify important heterogeneity of treatment effects (HTE) in these subgroups Thus, HTE is relevant to all with interest in patients' responses to interventions, including regulators who must make decisions about products when signals of harms arise postapproval and payers who make coverage decisions based on expected net benefit to their beneficiaries. Prior work discussed HTE in randomized studies. Here, we address methodological considerations when investigating HTE in observational studies. We propose 4 primary goals of HTE analyses and the corresponding approaches in the context of RWD: to confirm subgroup effects, to describe the magnitude of HTE, to discover clinically important subgroups, and to predict individual effects. We discuss other possible goals including exploring prognostic score- and propensity score-based treatment effects, and testing the transportability of trial results to populations different from trial participants. Finally, we outline methodological needs for enhancing real-world HTE analysis.
越来越多的真实世界数据(RWD)来源于患者护理,这些数据的出现为亚人群患者甚至个体的临床决策提供了证据。越来越有机会在这些亚组中确定治疗效果的重要异质性(HTE)。因此,所有对患者对干预措施的反应感兴趣的人,包括在批准后出现危害信号时必须对产品做出决策的监管机构,以及根据对受益人的预期净收益做出覆盖决策的支付方,都需要关注 HTE。之前的工作讨论了随机研究中的 HTE。在这里,我们在观察性研究中调查 HTE 时,考虑了方法学方面的问题。我们在 RWD 背景下提出了 HTE 分析的 4 个主要目标以及相应的方法:确认亚组效果、描述 HTE 的大小、发现有临床意义的亚组以及预测个体效果。我们还讨论了其他可能的目标,包括探索基于预后评分和倾向评分的治疗效果,以及检验试验结果在与试验参与者不同的人群中的可转移性。最后,我们概述了增强真实世界 HTE 分析的方法学需求。