Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.
Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA.
Nat Mater. 2023 Jun;22(6):684-695. doi: 10.1038/s41563-023-01492-6. Epub 2023 Mar 20.
Antiferromagnets have attracted extensive interest as a material platform in spintronics. So far, antiferromagnet-enabled spin-orbitronics, spin-transfer electronics and spin caloritronics have formed the bases of antiferromagnetic spintronics. Spin transport and manipulation based on coherent antiferromagnetic dynamics have recently emerged, pushing the developing field of antiferromagnetic spintronics towards a new stage distinguished by the features of spin coherence. In this Review, we categorize and analyse the critical effects that harness the coherence of antiferromagnets for spintronic applications, including spin pumping from monochromatic antiferromagnetic magnons, spin transmission via phase-correlated antiferromagnetic magnons, electrically induced spin rotation and ultrafast spin-orbit effects in antiferromagnets. We also discuss future opportunities in research and applications stimulated by the principles, materials and phenomena of coherent antiferromagnetic spintronics.
反铁磁体作为自旋电子学的材料平台引起了广泛的关注。到目前为止,基于反铁磁体的自旋轨道电子学、自旋转移电子学和自旋热电子学已经构成了反铁磁体自旋电子学的基础。基于相干反铁磁动力学的自旋输运和操控最近已经出现,将反铁磁体自旋电子学的发展领域推向了一个新的阶段,其特点是自旋相干性。在这篇综述中,我们对利用反铁磁体的相干性进行自旋电子学应用的关键效应进行了分类和分析,包括来自单磁振子的自旋泵浦、通过相关相磁振子的自旋传输、电诱导的自旋旋转和反铁磁体中的超快自旋轨道效应。我们还讨论了由相干反铁磁体自旋电子学的原理、材料和现象所激发的未来研究和应用的机会。