Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, F-91767, Palaiseau, France.
Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
Nat Commun. 2023 Mar 31;14(1):1818. doi: 10.1038/s41467-023-37509-6.
Antiferromagnetic materials have been proposed as new types of narrowband THz spintronic devices owing to their ultrafast spin dynamics. Manipulating coherently their spin dynamics, however, remains a key challenge that is envisioned to be accomplished by spin-orbit torques or direct optical excitations. Here, we demonstrate the combined generation of broadband THz (incoherent) magnons and narrowband (coherent) magnons at 1 THz in low damping thin films of NiO/Pt. We evidence, experimentally and through modeling, two excitation processes of spin dynamics in NiO: an off-resonant instantaneous optical spin torque in (111) oriented films and a strain-wave-induced THz torque induced by ultrafast Pt excitation in (001) oriented films. Both phenomena lead to the emission of a THz signal through the inverse spin Hall effect in the adjacent heavy metal layer. We unravel the characteristic timescales of the two excitation processes found to be < 50 fs and > 300 fs, respectively, and thus open new routes towards the development of fast opto-spintronic devices based on antiferromagnetic materials.
由于其超快的自旋动力学,反铁磁材料已被提议作为新型窄带太赫兹自旋电子器件。然而,相干地操纵其自旋动力学仍然是一个关键挑战,预计可以通过自旋轨道扭矩或直接光学激发来实现。在这里,我们在 NiO/Pt 低阻尼薄膜中演示了宽带(非相干)磁振子和窄带(相干)磁振子的联合产生,频率为 1 THz。我们通过实验和建模证明了 NiO 中自旋动力学的两种激发过程:在(111)取向的薄膜中,非共振瞬时光自旋扭矩,以及在(001)取向的薄膜中,超快 Pt 激发引起的应变波诱导的太赫兹扭矩。这两种现象都通过相邻重金属层中的逆自旋霍尔效应导致太赫兹信号的发射。我们揭示了这两种激发过程的特征时间尺度,分别为 <50 fs 和 >300 fs,从而为基于反铁磁材料的快速光电自旋电子器件的发展开辟了新途径。