Arbas E A, Calabrese R L
Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138.
J Neurosci. 1987 Dec;7(12):3953-60. doi: 10.1523/JNEUROSCI.07-12-03953.1987.
In the preceding paper (Arbas and Calabrese, 1987), we identified several properties that contribute to the activity of neurons (HN cells) that control heartbeat in the medicinal leech. Premotor HN (7) interneurons, which do not generate the heartbeat rhythm, exhibit Na+-dependent fast action potentials, Ca2+-mediated plateau potentials in the absence of Na+, and hyperpolarization-activated "restorative" changes in membrane potential that depolarize the membrane potential on hyperpolarization due to injected currents or synaptic inhibition. HN interneurons of ganglia 3 and 4 (i.e., timing oscillator interneurons) exhibit all of the properties described for HN (7) interneurons and have the additional characteristic that they are connected in oscillatory circuits. Reciprocal oscillations in membrane potential occurred in the bilateral HN interneurons (3) and (4) in the presence of elevated Ca2+ that were independent of Na+ -mediated action potentials. Their ability to oscillate in this way is based on 3 parameters: (1) production of a regenerative plateau potential by one of the pair of HN neurons in either ganglion, (2) inhibition of the contralateral HN neuron by the HN neuron in plateau, and (3) a phase transition mediated by escape from inhibition by the hyperpolarized HN neuron. The conductances responsible for restorative membrane potential shifts activated by hyperpolarization during synaptic inhibition may mediate the escape from inhibition that times the phase transition of the 2 HN neurons.
在前一篇论文(阿尔巴斯和卡拉布雷斯,1987年)中,我们确定了一些有助于控制药用水蛭心跳的神经元(HN细胞)活动的特性。前运动HN(7)中间神经元不产生心跳节律,表现出钠依赖性快速动作电位、在无钠时由钙介导的平台电位,以及超极化激活的膜电位“恢复性”变化,这种变化在因注入电流或突触抑制而发生超极化时使膜电位去极化。第3和第4神经节的HN中间神经元(即定时振荡器中间神经元)表现出了上述针对HN(7)中间神经元所描述的所有特性,并且还有一个额外的特点,即它们连接在振荡回路中。在存在升高的钙离子且与钠介导的动作电位无关的情况下,双侧HN中间神经元(3)和(4)会出现膜电位的往复振荡。它们以这种方式振荡的能力基于三个参数:(1)两个神经节中一对HN神经元中的一个产生再生性平台电位,(2)处于平台电位的HN神经元对同侧HN神经元的抑制,(3)由超极化的HN神经元摆脱抑制介导的相位转换。在突触抑制期间由超极化激活的负责恢复性膜电位变化的电导可能介导了摆脱抑制,从而为两个HN神经元的相位转换计时。