College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
Ningbo Fenghua District Peach Research Institute, Ningbo 315502, China.
Plant Physiol. 2023 May 31;192(2):1638-1655. doi: 10.1093/plphys/kiad182.
Auxin can inhibit or promote fruit ripening, depending on the species. Melting flesh (MF) peach fruit (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high concentrations of indole-3-acetic acid (IAA), which leads to rapid fruit softening at the late stage of development. In contrast, due to the low concentrations of IAA, the fruit of stony hard (SH) peach cultivars does not soften and produces little ethylene. Auxin seems necessary to trigger the biosynthesis of ethylene in peach fruit; however, the mechanism is not well understood. In this study, we identified miRNA gene family members ppe-miR393a and ppe-miR393b that are differentially expressed in SH and MF fruits. RNA ligase-mediated 5' rapid amplification of cDNA ends and transient transformation of Nicotiana benthamiana revealed TRANSPORT INHIBITOR RESPONSE 1 (PpTIR1), part of the auxin perception and response system, as a target of ppe-miR393a and b. Yeast 2-hybrid assay and bimolecular fluorescence complementation assay revealed that PpTIR1 physically interacts with an Aux/IAA protein PpIAA13. The results of yeast 1-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay indicated that PpIAA13 could directly bind to and trans-activate the promoter of 1-aminocyclopropane-1-carboxylic acid synthase 1 (PpACS1), required for ethylene biosynthesis. Transient overexpression and suppression of ppe-miR393a and PpIAA13 in peach fruit induced and repressed the expression of PpACS1, confirming their regulatory role in ethylene synthesis. Gene expression analysis in developing MF and SH fruits, combined with postharvest α-naphthalene acetic acid (NAA) treatment, supports a role for a ppe-miR393-PpTIR1-PpIAA13-PpACS1 module in regulating auxin-related differences in ethylene production and softening extent in different types of peach.
生长素可以抑制或促进果实成熟,具体取决于物种。融肉(MF)桃果实(Prunus persica L. Batsch)品种产生高水平的乙烯,这是由于吲哚-3-乙酸(IAA)浓度高引起的,这导致果实在发育后期迅速软化。相比之下,由于 IAA 浓度低,石桃品种的果实不会软化,产生的乙烯很少。生长素似乎是触发桃果实中乙烯生物合成所必需的;然而,其机制尚不清楚。在这项研究中,我们鉴定了 miRNA 基因家族成员 ppe-miR393a 和 ppe-miR393b,它们在 SH 和 MF 果实中差异表达。RNA 连接酶介导的 5'快速扩增 cDNA 末端和瞬时转化烟草原生质体表明,生长素感应和反应系统的一部分 TRANSPORT INHIBITOR RESPONSE 1(PpTIR1)是 ppe-miR393a 和 b 的靶标。酵母 2 杂交试验和双分子荧光互补试验表明,PpTIR1 与Aux/IAA 蛋白 PpIAA13 物理相互作用。酵母 1 杂交试验、电泳迁移率变动分析和双荧光素酶报告基因分析的结果表明,PpIAA13 可以直接结合并激活乙烯生物合成所需的 1-氨基环丙烷-1-羧酸合酶 1(PpACS1)启动子,并使其转录激活。在桃果实中瞬时过表达和抑制 ppe-miR393a 和 PpIAA13 诱导和抑制了 PpACS1 的表达,证实了它们在乙烯合成中的调节作用。对发育中的 MF 和 SH 果实进行基因表达分析,并结合采后 α-萘乙酸(NAA)处理,支持了 ppe-miR393-PpTIR1-PpIAA13-PpACS1 模块在调节不同类型桃中生长素相关差异乙烯产生和软化程度中的作用。