Brenner Benjamin, Sun Cheng, Raymo Françisco M, Zhang Hao F
Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
Nano Converg. 2023 Mar 21;10(1):14. doi: 10.1186/s40580-023-00363-9.
Single-molecule localization microscopy (SMLM) breaks the optical diffraction limit by numerically localizing sparse fluorescence emitters to achieve super-resolution imaging. Spectroscopic SMLM or sSMLM further allows simultaneous spectroscopy and super-resolution imaging of fluorescence molecules. Hence, sSMLM can extract spectral features with single-molecule sensitivity, higher precision, and higher multiplexity than traditional multicolor microscopy modalities. These new capabilities enabled advanced multiplexed and functional cellular imaging applications. While sSMLM suffers from reduced spatial precision compared to conventional SMLM due to splitting photons to form spatial and spectral images, several methods have been reported to mitigate these weaknesses through innovative optical design and image processing techniques. This review summarizes the recent progress in sSMLM, its applications, and our perspective on future work.
单分子定位显微镜(SMLM)通过对稀疏荧光发射体进行数值定位来突破光学衍射极限,从而实现超分辨率成像。光谱SMLM(sSMLM)进一步允许对荧光分子进行同步光谱分析和超分辨率成像。因此,与传统的多色显微镜模式相比,sSMLM能够以单分子灵敏度、更高的精度和更高的多重性提取光谱特征。这些新功能推动了先进的多重和功能性细胞成像应用。虽然由于光子分裂以形成空间和光谱图像,sSMLM与传统SMLM相比空间精度有所降低,但已有几种方法通过创新的光学设计和图像处理技术来减轻这些弱点。本文综述了sSMLM的最新进展、其应用以及我们对未来工作的展望。