Suppr超能文献

基于单分子定位显微镜的纳米囊泡高通量粒径误差校正方法。

Error-Correction Method for High-Throughput Sizing of Nanoscale Vesicles with Single-Molecule Localization Microscopy.

出版信息

J Phys Chem B. 2023 Mar 30;127(12):2701-2707. doi: 10.1021/acs.jpcb.2c09053. Epub 2023 Mar 21.

Abstract

Single-molecule localization microscopy (SMLM) allows super-resolution imaging, mapping, counting, and sizing of biological nanostructures such as cell organelles and extracellular vesicles (EVs), but sizing structures smaller than ∼100 nm can be inaccurate due to single-molecule localization error caused by distortion of the point spread function and limited photon number. Here we demonstrate a method to correct localization error when sizing vesicles and other spherical nanoparticles with SMLM and compare sizing results using two vesicle labeling schemes. We use mean approximation theory to derive a simple equation using full width at half-maximum (FWHM) for correcting particle sizes measured by two-dimensional SMLM, validate the method by sizing streptavidin-coated polystyrene nanobeads with the SMLM technique STORM with and without error correction, using transmission electron microscopy (TEM) for comparison, and then apply the method to sizing small seminal EVs. Nanobead sizes measured by STORM became increasingly less accurate (larger than TEM values) for beads smaller than 50 nm. The error-correction method reduced the size difference versus TEM from 15% without error correction to 7% with error correction for 40 nm beads, from 44% to 9% for 30 nm beads, and from 66% to 15% for 20 nm beads. Seminal EVs were labeled with a lipophilic membrane dye (MemBright 700) and with an Alexa Fluor 488-anti-CD63 antibody conjugate, and were sized separately using both dyes by STORM. Error-corrected exosome diameters were smaller than uncorrected values: 72 nm vs 79 nm mean diameter with membrane dyes; 84 nm vs 97 nm with the antibody-conjugated dyes. The mean error-corrected diameter was 12 nm smaller when using the membrane dye than when using the antibody-conjugated dye likely due to the large size of the antibody. Thus, both the error-correction method and the compact membrane labeling scheme reduce overestimation of vesicle size by SMLM. This error-correction method has a low computational cost as it does not require correction of individual blinking events, and it is compatible with all SMLM techniques (e.g., PALM, STORM, and DNA-PAINT).

摘要

单分子定位显微镜 (SMLM) 允许对细胞细胞器和细胞外囊泡 (EV) 等生物纳米结构进行超分辨率成像、映射、计数和尺寸测量,但由于点扩散函数的失真和有限的光子数导致的单分子定位误差,对于小于约 100nm 的结构进行尺寸测量可能会不准确。在这里,我们展示了一种在使用 SMLM 对囊泡和其他球形纳米颗粒进行尺寸测量时校正定位误差的方法,并比较了两种囊泡标记方案的尺寸测量结果。我们使用均方逼近理论,通过半峰全宽 (FWHM) 推导出一个简单的方程,用于校正二维 SMLM 测量的颗粒尺寸,通过使用 SMLM 技术 STORM 进行的带有和不带有误差校正的链霉亲和素包被聚苯乙烯纳米珠的尺寸测量来验证该方法,并用透射电子显微镜 (TEM) 进行比较,然后将该方法应用于测量小的精液 EV。使用 STORM 测量的纳米珠尺寸对于小于 50nm 的珠子变得越来越不准确(大于 TEM 值)。对于 40nm 的珠子,从无误差校正的 15%减小到误差校正的 7%,对于 30nm 的珠子,从 44%减小到 9%,对于 20nm 的珠子,从 66%减小到 15%。精液 EV 用亲脂性膜染料 (MemBright 700) 和 Alexa Fluor 488-抗 CD63 抗体缀合物进行标记,并分别使用两种染料通过 STORM 进行尺寸测量。经误差校正的外泌体直径小于未经校正的值:用膜染料时为 72nm 与 79nm 的平均直径;用抗体缀合染料时为 84nm 与 97nm。使用膜染料时,经误差校正的平均直径比使用抗体缀合染料时小 12nm,这可能是由于抗体的尺寸较大。因此,误差校正方法和紧凑的膜标记方案都可以减少 SMLM 对囊泡尺寸的高估。该误差校正方法的计算成本低,因为它不需要对单个闪烁事件进行校正,并且与所有 SMLM 技术(例如 PALM、STORM 和 DNA-PAINT)兼容。

相似文献

1
Error-Correction Method for High-Throughput Sizing of Nanoscale Vesicles with Single-Molecule Localization Microscopy.
J Phys Chem B. 2023 Mar 30;127(12):2701-2707. doi: 10.1021/acs.jpcb.2c09053. Epub 2023 Mar 21.
2
5
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

引用本文的文献

1
Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects.
Chem Biomed Imaging. 2023 Dec 15;2(1):27-46. doi: 10.1021/cbmi.3c00095. eCollection 2024 Jan 22.
3
Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review.
Adv Sci (Weinh). 2024 Aug;11(30):e2401069. doi: 10.1002/advs.202401069. Epub 2024 Jun 14.
4
Molecular mapping of neuronal architecture using STORM microscopy and new fluorescent probes for SMLM imaging.
Neurophotonics. 2024 Jan;11(1):014414. doi: 10.1117/1.NPh.11.1.014414. Epub 2024 Mar 8.

本文引用的文献

1
A framework for evaluating the performance of SMLM cluster analysis algorithms.
Nat Methods. 2023 Feb;20(2):259-267. doi: 10.1038/s41592-022-01750-6. Epub 2023 Feb 10.
2
Exploring Cell Surface-Nanopillar Interactions with 3D Super-Resolution Microscopy.
ACS Nano. 2022 Jan 25;16(1):192-210. doi: 10.1021/acsnano.1c05313. Epub 2021 Sep 28.
5
Sizing Extracellular Vesicles Using Membrane Dyes and a Single Molecule-Sensitive Flow Analyzer.
Anal Chem. 2021 Apr 13;93(14):5897-5905. doi: 10.1021/acs.analchem.1c00253. Epub 2021 Mar 30.
6
Machine learning for cluster analysis of localization microscopy data.
Nat Commun. 2020 Mar 20;11(1):1493. doi: 10.1038/s41467-020-15293-x.
7
Single molecule characterization of individual extracellular vesicles from pancreatic cancer.
J Extracell Vesicles. 2019 Nov 4;8(1):1685634. doi: 10.1080/20013078.2019.1685634. eCollection 2019.
8
MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience.
Cell Chem Biol. 2019 Apr 18;26(4):600-614.e7. doi: 10.1016/j.chembiol.2019.01.009. Epub 2019 Feb 7.
9
Pointwise error estimates in localization microscopy.
Nat Commun. 2017 May 3;8:15115. doi: 10.1038/ncomms15115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验