Suppr超能文献

基于机器学习的定位显微镜数据分析聚类。

Machine learning for cluster analysis of localization microscopy data.

机构信息

Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.

London Centre for Nanotechnology and Department of Chemistry, University College London, London, WC1H 0AH, UK.

出版信息

Nat Commun. 2020 Mar 20;11(1):1493. doi: 10.1038/s41467-020-15293-x.

Abstract

Quantifying the extent to which points are clustered in single-molecule localization microscopy data is vital to understanding the spatial relationships between molecules in the underlying sample. Many existing computational approaches are limited in their ability to process large-scale data sets, to deal effectively with sample heterogeneity, or require subjective user-defined analysis parameters. Here, we develop a supervised machine-learning approach to cluster analysis which is fast and accurate. Trained on a variety of simulated clustered data, the neural network can classify millions of points from a typical single-molecule localization microscopy data set, with the potential to include additional classifiers to describe different subtypes of clusters. The output can be further refined for the measurement of cluster area, shape, and point-density. We demonstrate this approach on simulated data and experimental data of the kinase Csk and the adaptor PAG in primary human T cell immunological synapses.

摘要

量化单分子定位显微镜数据中斑点聚集的程度对于理解样品中分子之间的空间关系至关重要。许多现有的计算方法在处理大规模数据集、有效处理样品异质性或需要主观用户定义的分析参数方面存在局限性。在这里,我们开发了一种快速准确的监督机器学习聚类分析方法。该神经网络经过各种模拟聚类数据的训练,可以对典型的单分子定位显微镜数据集的数百万个点进行分类,并且有可能包括其他分类器来描述不同类型的聚类。输出结果可以进一步细化,以测量聚类的面积、形状和点密度。我们在模拟数据和原代人 T 细胞免疫突触中激酶 Csk 和衔接蛋白 PAG 的实验数据上验证了这种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa16/7083906/fea328835fae/41467_2020_15293_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验